79.1. THE CASE OF UNIQUENESS 2689

+C∫

(∫ t

0∥Bun∥2

W ∥Φn∥2L2

ds)1/2

dP

Now ∥Bw∥= sup∥v∥≤1 ⟨Bw,v⟩ ≤ ⟨Bw,w⟩1/2. Also∫ t

0 ∥Φn∥2L2

ds≤∫ T

0 ∥Φ∥2L2

ds and so theabove inequality implies

E

(sup

s∈[0,t]⟨Bun,un⟩(s)

)+E

(∫ t

0∥un (s)∥p

V ds)

≤ C ( f ,λ ,c,Φ)+C∫

sups∈[0,t]

⟨Bun,un⟩1/2 (s)(∫ t

0∥Φ∥2

L2

)1/2

dP

Then adjusting the constants yields

12

E

(sup

s∈[0,T ]⟨Bun,un⟩(s)

)+E

(∫ T

0∥un (s)∥p

V ds)

≤C+C∫

∫ T

0∥Φ∥2

L2dtdP≡C (79.1.15)

If needed, you could use a stopping time to be sure that E(

sups∈[0,T ] ⟨Bun,un⟩(s))< ∞

and then let it converge to ∞.From the integral equation,

Bun (t)−Bum (t)+∫ t

0zn− zmds = B

∫ t

0(Φn−Φm)dW

Then using the monotonicity assumption and the Ito formula,

12⟨Bun−Bum,un−um⟩(t)≤ λ

∫ t

0⟨Bun−Bum,un−um⟩dss

+∫ t

0⟨B(Φn−Φm) ,Φn−Φm⟩d +

∫ t

0

((Φn−Φm)◦ J−1)∗B(un−um)◦ JdW

and so, from Gronwall’s inequality, there is a constant C which is independent of m,n suchthat

⟨Bun−Bum,un−um⟩(t)≤CMnm (t)≤CM∗nm (T )+C∫ t

0∥Φn−Φm∥2

L2ds

where Mnm refers to that local martingale on the right. Thus also

supt∈[0,T ]

⟨Bun−Bum,un−um⟩(t)≤CMnm (t)≤CM∗nm (T )+C∫ T

0∥Φn−Φm∥2

L2ds

(79.1.16)Taking the expectation and using the Burkholder Davis Gundy inequality again in a similarmanner to the above,

E

(sup

t∈[0,T ]⟨Bun−Bum,un−um⟩(t)

)≤C

∫Ω

∫ T

0∥Φn−Φm∥2

L2dtdP

79.1. THE CASE OF UNIQUENESS 2689t 1/220 [( [iui iealigas) apNow ||Bw|| = supj,y< (Bw,v) < (Bw,w)"?. Also fp ||®n|l, ds < Ig. || Pll’, ds and so theabove inequality impliesE (ss (Bun, Un) ) +E (f ||un (IR ds): 1/2< CUP A68)+C [sup Bunn)! (0)( [lel ) —aPQ se[0,2] 0Then adjusting the constants yieldslp (sp Bun.) 0) +6 ( [luo (oll-as)T<c+e[ | || ||, dtdP =C (79.1.15)Q/0If needed, you could use a stopping time to be sure that E (sup.cjo.r (Bun, Un) (s)) <00and then let it converge to ©.From the integral equation,t tBuy (t) — Bum (t) +f Zn — Zmds = B | (®, —®,) dWThen using the monotonicity assumption and the Ito formula,1 ‘t3 (Bun — Bum, Un — Um) (t) < a | (Bun — Bum, Un — Um) ass+[ (B(®)— Bn) Pn Pn) d + | ((®p — Bin) oJ!) B (ttn — Um) SAWand so, from Gronwall’s inequality, there is a constant C which is independent of m,n suchthatt(Buy — Bus — Um) (t) < CMa (t) < CM%, (T) +c |, — On||2, aswhere M,,, refers to that local martingale on the right. Thus alsoTsup (Buy — Bum, Un — Um) (t) < CMnm (t) < CM;,, (T) +c [ |b, — Pn|l%, dste [0,7](79.1.16)Taking the expectation and using the Burkholder Davis Gundy inequality again in a similarmanner to the above,TE( sup (Bun —Buy,tn — Um) (t) <cf | |]®, — ®p|%, dtaPte[0,7] Q/0