2588 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS

We claim that∫ t

0

⟨(B(

un−∫ (·)

0ΨdW

))′−(

B(

u−∫ (·)

0ΨdW

))′,un−u

⟩ds≥ 0

The difficulty is that∫ (·)

0 ΨdW is only in W . To see that the conclusion is so, note that it isclear from a computation that

∫ t

0

⟨ 1−τ(h)h

(Bun−B

∫ (·)0 ΨdW

)− 1−τ(h)

h

(Bu−B

∫ (·)0 ΨdW

),un−u

⟩ds≥ 0 (76.7.68)

Claim: The above is indeed nonnegative.Proof: Denote by q(t) the stochastic integral, un as u and u as v to save notation. Then

the left side of the above equals

1h

∫ t

0⟨B(u−q)−B(v−q) ,u− v⟩ds

−1h

∫ t

h⟨B(u(s−h)−q(s−h))−B(v(s−h)−q(s−h)) ,u(s)− v(s)⟩ds

≥ 1h

∫ t

0⟨B(u−q)−B(v−q) ,u− v⟩ds

− 12h

∫ t

h

⟨B(u(s−h)−q(s−h))−B(v(s−h)−q(s−h)) ,

(u(s−h)− v(s−h))

⟩ds

− 12h

∫ t

h⟨B(u−q)−B(v−q) ,u− v⟩ds

≥ 1h

∫ t

0⟨B(u−q)−B(v−q) ,u− v⟩ds

− 12h

∫ t−h

0⟨B(u(s)−q(s))−B(v(s)−q(s)) ,(u(s)− v(s))⟩ds

− 12h

∫ t

h⟨B(u−q)−B(v−q) ,u− v⟩ds

=1h

∫ t

t−h⟨B(u−q)−B(v−q) ,u− v⟩ds

+1h

∫ t−h

0⟨B(u−q)−B(v−q) ,u− v⟩ds

− 12h

∫ t−h

0⟨B(u−q)−B(v−q) ,(u− v)⟩ds

− 12h

∫ t

h⟨B(u−q)−B(v−q) ,u− v⟩ds

2588 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONSWe claim that[((e(u- [2 an) — (00 (mar) narThe difficulty is that Ie WdW is only in W. To see that the conclusion is so, note that it isclear from a computation that1—t(h) ()' 10) (Bu, — Bf Yaw[ 1th ( hh ) ja =0 (76.7.68)0 he (Bu—B Jy AW) stn —uClaim: The above is indeed nonnegative.Proof: Denote by q(t) the stochastic integral, u, as u and u as v to save notation. Thenthe left side of the above equals7 [| (Bua) -Blv—a),u=n) ds01 t—7, J, Bush) —a(s—h)) — B(v (sh) ~g (sh) ,u(s) — v(s)) ds> 5 [ Blu-q)- Bea) u-v)as1 f'[ Bu(s—h)—4(s—h)) -B(o(s—h) —4(s—n)). \,,,x I, ( (u(s—h) —v(s—h)) 41 t— 5; [| (Bu—a)—Be—4).u—v)asIV5 [| (B= 4) -Be—4) uv) ds[Bus —a(s))-B(0(6) ~4(8)) (ul) -v(s)))as— 5; [| (Bua) BO—4).u—9)ds= 5 [Bua BU —4),u—vJash Jt-h1 t—h+; [f (B(u—q) —B(v—q),u—v)dst—hah (B(u—q) —B(v—q),(u—v))ds