76.7. OTHER EXAMPLES, INCLUSIONS 2589

=1h

∫ t

t−h⟨B(u−q)−B(v−q) ,u− v⟩ds

+1

2h

∫ t−h

0⟨B(u−q)−B(v−q) ,(u− v)⟩ds

− 12h

∫ t−h

h⟨B(u−q)−B(v−q) ,u− v⟩ds

− 12h

∫ t

t−h⟨B(u−q)−B(v−q) ,u− v⟩ds

=12h

∫ t

t−h⟨B(u−q)−B(v−q) ,u− v⟩ds

+1

2h

∫ h

0⟨B(u−q)−B(v−q) ,(u− v)⟩ds

which is nonnegative as can be seen by replacing u− v with (u−q)− (v−q) and usingmonotonicity of B.

Now pass to a limit in 76.7.68 as h→ 0 to get the desired inequality. Therefore, from76.7.67,

lim supn→∞

∫ T

0⟨A(t,un)+h(t,ω)Jn (un) ,un−u⟩dt ≤ 0

From the above strong convergence, the left side equals

lim supn→∞

∫ T

0⟨A(t,un) ,un−u⟩dt ≤ 0

It follows that for all v ∈ Vω ,∫ T

0⟨A(t,u) ,u− v⟩dt

≤ lim infn→∞

∫ T

0⟨A(t,un) ,un− v⟩dt

= lim supn→∞

[∫ T

0⟨A(t,un) ,un−u⟩dt +

∫ T

0⟨A(t,un) ,u− v⟩dt

]≤

∫ T

0⟨ξ ,u− v⟩dt

Since v is arbitrary, A(·,u) = ξ ∈ V ′ω . Passing to the limit in the integral equation yields

Bu(t)−Bu0 +∫ t

0A(s,u)ds+

∫ t

0h(s,ω)ζ (s,ω)ds =

∫ t

0ΦdW

What is h(s,ω)ζ (s,ω)?∫ T

0⟨h(s,ω)Jn (un (s)) ,v(s)−un (s)⟩ds≤

∫ T

0h(s,ω)(φ n (v)−φ n (un))ds

76.7. OTHER EXAMPLES, INCLUSIONS 2589=f (0-4) -B0—9) rh+o [Bu—4) Bera) uv)1 t—ha (B(u—q) —B(v—q) ,u—v)ds—— (B(u—q) —B(v—q),u—v)ds= - "(Blu 4) ~B(v=4) uv) dsh+5, (B(w—q) —B(v—q),(u—v)) dswhich is nonnegative as can be seen by replacing u — v with (u—q) — (v—q) and usingmonotonicity of B.Now pass to a limit in 76.7.68 as h — 0 to get the desired inequality. Therefore, from76.7.67,Tlim sup | (A(t,un) +h (t,@)Jn (un) Un —u) dt <0noo JOFrom the above strong convergence, the left side equalsTlim sup | (A(t,un),U,—u) dt <0n—oo JOIt follows that for all v € %,T[ (A(t,u) ,u—v)dt0T< liminf | (A(t,u_),u,—v) dtne JoT T= limsup I (A (ttm) stn —a) at + (A(Gn) uv)n—oo | JO 0T< [ &u-vat0Since v is arbitrary, A(-,u) = € € ¥). Passing to the limit in the integral equation yieldst t tBu(t) — Buy + | A(s,u)ds+ f h(s,@)C(s,@)ds = [ dW0 0 0What is h(s,@) € (s, @)?[F (26s,)dnun()).0(s) ea (3)) As [ W(s,0) (0, (0) 0p (um) ds