76.7. OTHER EXAMPLES, INCLUSIONS 2589
=1h
∫ t
t−h⟨B(u−q)−B(v−q) ,u− v⟩ds
+1
2h
∫ t−h
0⟨B(u−q)−B(v−q) ,(u− v)⟩ds
− 12h
∫ t−h
h⟨B(u−q)−B(v−q) ,u− v⟩ds
− 12h
∫ t
t−h⟨B(u−q)−B(v−q) ,u− v⟩ds
=12h
∫ t
t−h⟨B(u−q)−B(v−q) ,u− v⟩ds
+1
2h
∫ h
0⟨B(u−q)−B(v−q) ,(u− v)⟩ds
which is nonnegative as can be seen by replacing u− v with (u−q)− (v−q) and usingmonotonicity of B.
Now pass to a limit in 76.7.68 as h→ 0 to get the desired inequality. Therefore, from76.7.67,
lim supn→∞
∫ T
0⟨A(t,un)+h(t,ω)Jn (un) ,un−u⟩dt ≤ 0
From the above strong convergence, the left side equals
lim supn→∞
∫ T
0⟨A(t,un) ,un−u⟩dt ≤ 0
It follows that for all v ∈ Vω ,∫ T
0⟨A(t,u) ,u− v⟩dt
≤ lim infn→∞
∫ T
0⟨A(t,un) ,un− v⟩dt
= lim supn→∞
[∫ T
0⟨A(t,un) ,un−u⟩dt +
∫ T
0⟨A(t,un) ,u− v⟩dt
]≤
∫ T
0⟨ξ ,u− v⟩dt
Since v is arbitrary, A(·,u) = ξ ∈ V ′ω . Passing to the limit in the integral equation yields
Bu(t)−Bu0 +∫ t
0A(s,u)ds+
∫ t
0h(s,ω)ζ (s,ω)ds =
∫ t
0ΦdW
What is h(s,ω)ζ (s,ω)?∫ T
0⟨h(s,ω)Jn (un (s)) ,v(s)−un (s)⟩ds≤
∫ T
0h(s,ω)(φ n (v)−φ n (un))ds