2566 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS
≤∫
Ω
supt∈[0,T ]
⟨Bun,un⟩1/2 (t)
((∫ T
0∥Φn−Φ∥2
L2dt)1/2
)dP
≤
(∫Ω
supt∈[0,T ]
⟨Bun,un⟩(t)
)1/2(∫Ω
∫ T
0∥Φn−Φ∥2
L2dt)1/2
From 76.4.32
≤C(∫
Ω
∫ T
0∥Φn−Φ∥2
L2dt)1/2
which converges to 0.Return now to the equation solved by un in 76.4.37. Apply the Ito formula to this one.
This yields for a.e. t,
12⟨Bun (t) ,un (t)⟩−
12⟨Bu0n,u0n⟩+
∫ t
0⟨A(ω)un,un⟩ds =
12
∫ t
0⟨BΦn,Φn⟩ds
+∫ t
0⟨ f ,un⟩ds+
∫ t
0
(Φn ◦ J−1)∗Bun ◦ JdW (76.4.45)
Assume without loss of generality that T is not in the exceptional set. If not, consider allT ′ close to T such that T ′ is not in the exceptional set.∫ T
0⟨(λB+A(ω))un,un⟩ds
=12⟨Bu0n,u0n⟩−
12⟨Bun (T ) ,un (T )⟩+
∫ T
0⟨ f ,un⟩ds
+∫ T
0
(Φn ◦ J−1)∗Bun ◦ JdW +
12
∫ T
0⟨BΦn,Φn⟩ds+
∫ T
0⟨λBun,un⟩ds
Now it follows from 76.4.42 applied to t = T and the above lemma that
lim supn→∞
∫ T
0⟨(λB+A(ω))un,un⟩ds
≤ 12⟨Bu0,u0⟩−
12⟨Bu(T ) ,u(T )⟩+
∫ T
0⟨ f ,u⟩ds
+∫ T
0
(Φ◦ J−1)∗Bu◦ JdW +
12
∫ T
0⟨BΦ,Φ⟩ds+
∫ T
0⟨λBu,u⟩ds
and from 76.4.43, the expression on the right equals∫ T
0 ⟨λBu+ξ ,u⟩ds. Hence
lim supn→∞
∫ T
0⟨(λB+A(ω))un,un⟩ds≤
∫ T
0⟨λBu+ξ ,u⟩ds
Then since λB+A(ω) is monotone and hemicontinuous, it is type M and so this requiresA(ω)u = ξ .