76.4. THE GENERAL CASE 2565

Lemma 76.4.6 If Φ ∈ L2(Ω,L∞

([0,T ] ,L2

(Q1/2U,W

)))then∫ T

0

(Φn ◦ J−1)∗Bun ◦ JdW →

∫ T

0

(Φ◦ J−1)∗Bu◦ JdW

Proof:

E(∣∣∣∣∫ T

0

(Φn ◦ J−1)∗Bun ◦ JdW −

∫ T

0

(Φ◦ J−1)∗Bu◦ JdW

∣∣∣∣)

≤ E(∣∣∣∣∫ T

0

(Φn ◦ J−1)∗Bun ◦ JdW −

∫ T

0

(Φ◦ J−1)∗Bun ◦ JdW

∣∣∣∣)+E(∣∣∣∣∫ T

0

(Φ◦ J−1)∗Bun ◦ JdW −

∫ T

0

(Φ◦ J−1)∗Bu◦ JdW

∣∣∣∣)

≤∫

((∫ T

0∥Φn−Φ∥2

L2⟨Bun,un⟩

)1/2)

dP

+∫

(∫ T

0∥Φ∥2

L2⟨Bun−Bu,un−u⟩dt

)1/2

dP (76.4.44)

Consider that second term. It is no larger than∫Ω

∥Φ∥L∞([0,T ],L2)

(∫ T

0⟨Bun−Bu,un−u⟩dt

)1/2

dP

≤(∫

∥Φ∥2L∞([0,T ],L2)

)1/2(∫Ω

∫ T

0⟨Bun−Bu,un−u⟩dtdP

)1/2

Now consider the following. Letting the ei be the special vectors of Lemma 34.4.2, itfollows, ∫

∫ T

0⟨Bun−Bu,un−u⟩dtdP =

∫Ω

∫ T

0

∑i=1⟨Bun−Bu,ei⟩2 dtdP

=∫

∫ T

0

∑i=1

lim infp→∞

⟨Bun−Bup,ei

⟩2 dtdP

≤ lim infp→∞

∫Ω

∫ T

0

∑i=1

⟨Bun−Bup,ei

⟩2 dtdP

= lim infp→∞

∫Ω

∫ T

0

⟨Bun−Bup,un−up

⟩dtdP≤ T

2n

The last inequality follows from 76.4.34. Therefore, the second term in 76.4.44 is no largerthan (C (T,Φ)/2n)1/2 which converges to 0 as n→ ∞. Now consider the first term in76.4.44. ∫

((∫ T

0∥Φn−Φ∥2

L2⟨Bun,un⟩

)1/2)

dP

76.4. THE GENERAL CASE 2565Lemma 76.4.6 If ® € L? (Q,L* ([0,7],-4 (Q'/2U,W))) thenT T[| @no) Bin osaw — | (os!) BuoJdw0 0e(T * r *< e( (®, 0J') Bun odd ~ | (bos!) Buy saw]0 0ve (< [ (( [ene Binsin) *) dPT 1/2+ | ( I | Pll, (Bun — Bu, un — u) ar) dP (76.4.44)Q 0Consider that second term. It is no larger thanT 1/2[lele-coney (/ (Buy Buty) dt) dP; 1/2 1/2(/leli-w.n.x) (an (Bu — Bu, tin — u) dra?)Now consider the following. Letting the e; be the special vectors of Lemma 34.4.2, itfollows,T ToLf (Buy — Busty —u)dtdP = | | Y" (Bun — Bu, e;)” dtdPaJo alo &Proof:T T| (@ned)' Ban osaw — [ (os) BuoJaw )0 0T T[ (os!) Bun ovaw — | (®os"!)’ Buo.aw |)0 0= Lf Yim inf ( (Bun — Bup,ei)” dtdPpe: : 2lim inf, [ [ Y (By — Bue dtdPIA_ 2. f ft T= lim int [ (Bun — Buy, Un — Up) dtdP < 5The last inequality follows from 76.4.34. Therefore, the second term in 76.4.44 is no largerthan (C(T,®) /2ny'/ > which converges to 0 as n —> cc. Now consider the first term in76.4.44.T ; 1/2[ ((/ 5 — 2 (Bunt) ) a