2556 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS

Then from Gronwall’s inequality, and adjusting the constants,

⟨B(un−um) ,un−um⟩(t)+∫ t

0∥un−um∥α

U ds

≤ C (u0n−u0m,Φn−Φm)+C (T )M∗mn (t)

where the expectation of the first constant on the right converges to 0 as m,n→ ∞. Here

M∗nm (t) = sups∈[0,t]

|Mnm (t)|

Since M∗ is increasing, this implies that after adjusting constants,

sups∈[0,t]

(⟨B(un−um) ,un−um⟩(s)+

∫ t

0∥un−um∥α

U ds)

≤ C (u0n−u0m,Φn−Φm)+C (T )M∗mn (t)

Then taking expectations and using the Burkholder Davis Gundy inequality,

E

(sup

s∈[0,t]

(⟨B(un−um) ,un−um⟩(s)+

∫ t

0∥un−um∥α

U ds))

≤ C (u0n−u0m,Φn−Φm)+

C (T )∫

(∫ t

0∥Φn−Φm∥2

L2(Q1/2U,W) ⟨B(un−um) ,un−um⟩ds)1/2

dP

≤ Cn,m +2C∫

sups∈[0,t]

⟨B(un−um) ,un−um⟩1/2 (s) ·

(∫ t

0∥Φn−Φm∥2

L2(Q1/2U,W)

)1/2

dP

Then adjusting the constants,

E

(sup

s∈[0,t]

(⟨B(un−um) ,un−um⟩(s)+

∫ t

0∥un−um∥α

U ds))

≤Cn,m +C∫

∫ T

0∥Φn−Φm∥2

L2(Q1/2U,W) dtdP≡Cn,m

where Cn,m→ 0 as n,m→ ∞. In particular, it is true for t = T

E

(sup

s∈[0,T ]⟨B(un−um) ,un−um⟩(s)+

∫ T

0∥un−um∥α

U ds

)≤Cn,m

Then

P

(sup

s∈[0,T ]⟨B(un−um) ,un−um⟩(s)+

∫ T

0∥un−um∥α

U ds≥ λ

)≤

Cn,m

λ

2556 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONSThen from Gronwall’s inequality, and adjusting the constants,t(B (Un — Um) ,Un — Um) (t) +[ \lun — Um||y ds< C (uon = U0m, Pn — Pn) + C(T) Min (t)where the expectation of the first constant on the right converges to 0 as m,n — oo. HereMim (t) = sup [Min (t)|s€[0,t]Since M* is increasing, this implies that after adjusting constants,tsup ((8 (us — tn) to tn (0) f intl ds)s€[0,f] 0< C (uon — Yom, Pn — Pm) + C (LT) Minn (8)Then taking expectations and using the Burkholder Davis Gundy inequality,t£ [sp ((B(s~ tin) tintin) (5) +f bn lta)s€ [0,1] 0< C (von — Yom; Pn — Pn) +t 1/2cry |, (f |®.— Full (Q1/20,w) (Bua ~ tin) stim) dP< Cum #2€ | sup (B (un — Um) stn —Um)"!? (s)2 se[04sE[0,t' ; 1/2(/ | Pal corsuw) ) aeThen adjusting the constants,t£ (sp (8 (te ~ tn) to ~ (s) + [ nlf)s€ [0,1] 0T2 _< Cum +c[ | |®.— Pull (quay w) HP = Camwhere Chm — 0 as n,m —> . In particular, it is true for t = Tr aE( sup (B(un—Um) stn —Um) (s) + [ lun —Umll ds) < Cams€[0,T] 0ThenTr( sup (B (Un —Um) Un — Um) (5) + [ bn lies > s oa0se [0,7]