72.4. THE MAIN ESTIMATE 2447

The term involving the stochastic integral equals

2m−1

∑j=1

(∫ t j+1

t j

Z (u)dW,X (t j)

)H

By Theorem 65.14.1, this equals

2∫ tm

t1R((

Z (u)◦ J−1)∗X lk (u)

)◦ JdW,

t→∫ t

0 R((

Z (u)◦ J−1)∗X l

k (u))◦ JdW being a local martingale. Therefore, 72.4.7 equals

|X (tm)|2−|X0|2 = 2∫ tm

0⟨Y (u) ,X r

k (u)⟩du+ e(k)

2∫ tm

t1R((

Z (u)◦ J−1)∗X lk (u)

)◦ JdW +

m−1

∑j=1

∣∣M (t j+1)−M (t j)

∣∣2−

m−1

∑j=1

∣∣X (t j+1)−X (t j)−

(M(t j+1

)−M (t j)

)∣∣2−|X (t1)−X0−M (t1)|2

where e(k) converges to 0 in L1 (Ω) and for a.e. ω . Note that X lk (u) = 0 on [0, t1) and so

that stochastic integral equals∫ tm

0R((

Z (u)◦ J−1)∗X lk (u)

)◦ JdW.

Therefore, from the above,

|X (tm)|2−|X0|2 = 2∫ tm

0⟨Y (u) ,X r

k (u)⟩du+ e(k)

2∫ tm

0R((

Z (u)◦ J−1)∗X lk (u)

)◦ JdW +

m−1

∑j=0

∣∣M (t j+1)−M (t j)

∣∣2−|M (t1)|2

−m−1

∑j=1

∣∣X (t j+1)−X (t j)−

(M(t j+1

)−M (t j)

)∣∣2−|X (t1)−X0−M (t1)|2

Then since |M (t1)|2 converges to 0 in L1 (Ω) and for a.e. ω, as discussed above,

|X (tm)|2−|X0|2 = 2∫ tm

0⟨Y (u) ,X r

k (u)⟩du+ e(k)

+2∫ tm

0R((

Z (u)◦ J−1)∗X lk (u)

)◦ JdW +

m−1

∑j=0

∣∣M (t j+1)−M (t j)

∣∣2−|X (t1)−X0−M (t1)|2

72.4. THE MAIN ESTIMATE 2447The term involving the stochastic integral equalsoy (a Z(w)aw-X(u))By Theorem 65.14.1, this equalstm2/"R ((Z(w) os!)*x! (u)) oJdW,tyt— fy # ((Z(w)oJ~!)* X} (w)) oJdW being a local martingale. Therefore, 72.4.7 equalsLX (tm)? = [Xol? =2[" (u)) dute(k)tm * m—12/ R((Z(u)os"') x! (u)) osdW+ ¥ |M (th41) —M(t))|°j=ltym—1- y IX (tj41) —X (tj) — (M (t41) ~M(tj))|?- |X (t1) —Xo -—M(t1)|’where e(k) converges to 0 in L' (Q) and for a.e. @. Note that X/ (wu) = 0 on [0,t;) and sothat stochastic integral equals[2 ((Z(w oJ!)* x} (u)) oJdW.Therefore, from the above,(im)? [Xol? =2 [" (Yu) Xf) du bel)tin * m—12/ R((Z(u)os"') X{(w)) oJdW+ ¥ |M (t)41) —M(t)) —|M()0 j=0m—1— YE |X (41) —X (e) = (M (41) —M (4) P 1X (1) —X0— M(H) P=IThen since |M (t;)|* converges to 0 in L! (Q) and for a.e. @, as discussed above,IX (im)? = [ol = 2" (w) XZ (w)) du+e(R)tin * m—1+2 | R((Z(u)os"') Xi (u)) oJdW + Y° |M (t)41) —M(t;)|"j=0~|X (1) —Xo —M (n)|?