72.4. THE MAIN ESTIMATE 2447
The term involving the stochastic integral equals
2m−1
∑j=1
(∫ t j+1
t j
Z (u)dW,X (t j)
)H
By Theorem 65.14.1, this equals
2∫ tm
t1R((
Z (u)◦ J−1)∗X lk (u)
)◦ JdW,
t→∫ t
0 R((
Z (u)◦ J−1)∗X l
k (u))◦ JdW being a local martingale. Therefore, 72.4.7 equals
|X (tm)|2−|X0|2 = 2∫ tm
0⟨Y (u) ,X r
k (u)⟩du+ e(k)
2∫ tm
t1R((
Z (u)◦ J−1)∗X lk (u)
)◦ JdW +
m−1
∑j=1
∣∣M (t j+1)−M (t j)
∣∣2−
m−1
∑j=1
∣∣X (t j+1)−X (t j)−
(M(t j+1
)−M (t j)
)∣∣2−|X (t1)−X0−M (t1)|2
where e(k) converges to 0 in L1 (Ω) and for a.e. ω . Note that X lk (u) = 0 on [0, t1) and so
that stochastic integral equals∫ tm
0R((
Z (u)◦ J−1)∗X lk (u)
)◦ JdW.
Therefore, from the above,
|X (tm)|2−|X0|2 = 2∫ tm
0⟨Y (u) ,X r
k (u)⟩du+ e(k)
2∫ tm
0R((
Z (u)◦ J−1)∗X lk (u)
)◦ JdW +
m−1
∑j=0
∣∣M (t j+1)−M (t j)
∣∣2−|M (t1)|2
−m−1
∑j=1
∣∣X (t j+1)−X (t j)−
(M(t j+1
)−M (t j)
)∣∣2−|X (t1)−X0−M (t1)|2
Then since |M (t1)|2 converges to 0 in L1 (Ω) and for a.e. ω, as discussed above,
|X (tm)|2−|X0|2 = 2∫ tm
0⟨Y (u) ,X r
k (u)⟩du+ e(k)
+2∫ tm
0R((
Z (u)◦ J−1)∗X lk (u)
)◦ JdW +
m−1
∑j=0
∣∣M (t j+1)−M (t j)
∣∣2−|X (t1)−X0−M (t1)|2