2448 CHAPTER 72. THE HARD ITO FORMULA

−m−1

∑j=1

∣∣X (t j+1)−X (t j)−

(M(t j+1

)−M (t j)

)∣∣2 (72.4.8)

where e(k)→ 0 for a.e. ω and also in L1 (Ω).Now it follows on discarding the negative terms,

supt j∈Pk

∣∣X (t j)∣∣2 ≤ |X0|2 +2

∫ T

0|⟨Y (u) ,X r

k (u)⟩|du

+2 supt∈[0,T ]

∣∣∣∣∫ t

0R((

Z (u)◦ J−1)∗X lk (u)

)◦ JdW

∣∣∣∣+mk−1

∑j=0

∣∣∣∣∫ t j+1

t j

Z (u)dW∣∣∣∣2

where there are mk +1 points in Pk.Do

∫Ω

to both sides. Using the Ito isometry, this yields

∫Ω

(sup

t j∈Pk

∣∣X (t j)∣∣2)dP ≤ E

(|X0|2

)+2 ||Y ||K′ ||X

rk ||K

+mk−1

∑j=0

∫ t j+1

t j

∫Ω

||Z (u)||2 dPdu

+2∫

(sup

t∈[0,T ]

∣∣∣∣∫ T

0R((

Z (u)◦ J−1)∗X lk (u)

)◦ JdW

∣∣∣∣)

dP+E (|e(k)|)

≤C+∫ T

0

∫Ω

||Z (u)||2 dPdu+

+2∫

(sup

t∈[0,T ]

∣∣∣∣∫ T

0R((

Z (u)◦ J−1)∗X lk (u)

)◦ JdW

∣∣∣∣)

dP

≤C+2∫

(sup

t∈[0,T ]

∣∣∣∣∫ T

0R((

Z (u)◦ J−1)∗X lk (u)

)◦ JdW

∣∣∣∣)

dP

where the result of Lemma 72.2.1 that X rk converges to X̄ in K shows that the term which

is the product 2 ||Y ||K′∣∣∣∣X r

k

∣∣∣∣K is bounded. The constant C is a continuous function of

||Y ||K′ , ||X̄ ||K , ||Z||J ,∥X0∥L2(Ω,H)

which equals zero when all are equal to zero. The term involving the stochastic integral isnext.

Applying the Burkholder Davis Gundy inequality, Theorem 63.4.4 for F (r) = r alongwith the description of the quadratic variation of the Ito integral found in Corollary 65.11.1∫

supt j∈Pk

|X (tk)|2 dP

≤ C+C∫

(∫ T

0

∣∣∣∣∣∣R((Z (u)◦ J−1)∗X lk (u)

)◦ J∣∣∣∣∣∣2 du

)1/2

dP

2448 CHAPTER 72. THE HARD ITO FORMULAm-—1- » |X (tj41) —X (tj) — (M (1341) —M (4) [7 (72.4.8)where e (k) + 0 for a.e. @ and also in L! (Q).Now it follows on discarding the negative terms,T2 rsup |X (t))|? <IXoP?+2 f |(¥ (w) Xf (w))|dutje Px 0y 1 2+2 supte [0,7][ale (uw) oJ7!)* Xf (u) )ouaw| +Ti+1aT Z(u)dWtjwhere there are m, +1 points in Px.Do Jo to both sides. Using the Ito isometry, this yields2 rL (oe een a <_ E(x?) +210 lle IXQ\ eALy 1 tae [zw )||?dPdu[ o( eer mee src+2 f supte[0,7]T< c+ | | NIZ (uw) |2dPdut0 Q+2 f cae 4 (Zor) x) ou] a<c+2[) (se [fi 4 (@(0)os"1)'x\0)) asa apwhere the result of Lemma 72.2.1 that X{ converges to X in K shows that the term whichis the product 2||Y||x7 | |X; is bounded. The constant C is a continuous function ofIlMY Nice XM HIZI 7 + Xoll 22 (0,02which equals zero when all are equal to zero. The term involving the stochastic integral isnext.Applying the Burkholder Davis Gundy inequality, Theorem 63.4.4 for F (r) = r alongwith the description of the quadratic variation of the Ito integral found in Corollary 65.11.1| sup |X ()|2dPQtje Px< c+e (f || ((Z(u)os"!)"X} (u)) of> \12| au) dP