70.5. A FRICTION CONTACT PROBLEM 2423

Therefore, for a.e.t, ψ (t,x,ω) is in the subgradient of the function φ η (r) = |ηr| for a.e.x∈ΓC at the point r =

∣∣vkT − U̇T∣∣. In particular, ψ ∈ [−η ,η ] so that ν

(∣∣vkT − U̇T∣∣)−ψ is

between µs (0) and µ0 if∣∣vkT − U̇T

∣∣ = 0. If this quantity is positive, then ψ = η andν(∣∣vkT − U̇T

∣∣)−ψ reduces to µs(∣∣vkT − U̇T

∣∣) . Thus(∣∣vkT − U̇T∣∣ ,ν (∣∣vkT − U̇T

∣∣)−ψ)

is in the graph of µ a.e. Similar reasoning based on strong convergence and 70.5.59 impliesthat for a.e.t, ξ ∈ ∂γ where γ (y) = |y| at the point vkT − U̇T for a.e.x ∈ ΓC.

Consider the friction terms in 70.5.58. Letting w ∈V and recalling that µ(1/k) (r) =ν (r)−h′(1/k) (r) , ∫ T

0

∫ΓC

F((ukn−g)+

)µ(1/k)

(∣∣vkT − U̇T∣∣)ξ k ·wT dαdt

=∫ T

0

∫ΓC

F((ukn−g)+

)(ν(∣∣vkT − U̇T

∣∣)−h′(1/k)

(∣∣vkT − U̇T∣∣))ξ k ·wT dαdt

=∫ T

0

∫ΓC

F((ukn−g)+

)(ν(∣∣vkT − U̇T

∣∣)−ψ)

ξ k ·wT dαdt (70.5.60)

+∫ T

0

∫ΓC

F((ukn−g)+

)(ψ−h′(1/k)

(∣∣vkT − U̇T∣∣))ξ k ·wT dαdt (70.5.61)

Now consider the first integral. The strong convergence yields that this integral in70.5.60 converges to∫ T

0

∫ΓC

F((un−g)+

)(ν(∣∣vT − U̇T

∣∣)−ψ)

ξ ·wT dαdt

where ν(∣∣vT − U̇T

∣∣)−ψ is in the graph of µ a.e.Consider the second integral in 70.5.61.∫ T

0

∫ΓC

F((ukn−g)+

)(ψ−h′(1/k)

(∣∣vkT − U̇T∣∣))ξ k ·wT dαdt

≤∫ T

0

∫ΓC

F((ukn−g)+

)(ψ−h′(1/k)

(∣∣vkT − U̇T∣∣)) ·(∣∣vkT − U̇T +wT

∣∣− ∣∣vkT − U̇T∣∣)dαdt

Similarly,

−∫ T

0

∫ΓC

F((ukn−g)+

)(ψ−h′(1/k)

(∣∣vkT − U̇T∣∣))ξ k ·wT dαdt

≤∫ T

0

∫ΓC

F((ukn−g)+

)(ψ−h′(1/k)

(∣∣vkT − U̇T∣∣)) ·(∣∣vkT − U̇T −wT

∣∣− ∣∣vkT − U̇T∣∣)dαdt

70.5. A FRICTION CONTACT PROBLEM 2423Therefore, for a.e.t, y (t,x, @) is in the subgradient of the function 9, (r) =|nr| for a.e.x €T'¢ at the point r = |vgr — Ur]. In particular, y € [—1, 1] so that v (|ver — Ur|) — y isbetween U,(0) and Ly if \ver —Ur| = 0. If this quantity is positive, then y = 7 andv (|ver —Ur|) — y reduces to p, (|ver —Ur|) . ThusVv (\ver —Ur}) _— y)is in the graph of a.e. Similar reasoning based on strong convergence and 70.5.59 impliesthat for a.e.t, € € dy where y(y) = |y| at the point vzr — Ur for a.e.x € Tc.Consider the friction terms in 70.5.58. Letting w €¥ and recalling that Ho /k) (r) =V(r) hay[ Lr (kn — 8)4) Haye (Yer —Ur]|) 6, wrdecdt(\ver —U-[ fr (un — 8) 4.) 4.) (v (|ver = Ur]) =U ny (ver —Ur])) 6, wrdade= -[ ma (en —8)4.) (V (Wer — Ur|) — y) &, wrdodt (70.5.60)+f Lr (in 2) (v- M1) (|vir —Ur|)) Ee: wrdadt (70.5.61)Now consider the first integral. The strong convergence yields that this integral in70.5.60 converges to[ Le ((Un—g)4) (V (\vr —Ur}) —w) &-wrdadtwhere v (|vr —Uy|) — y is in the graph of pl a.e.Consider the second integral in 70.5.61.[ fr (kn — 8).) (v= Ae ix) ) (Iver —Ur])) Ex: -wrdadt< ff fr (win = 8).) (WA jy (Iver — Ur)(|ver —Ur +wr| — \ver —Ur|) dadtSimilarly,T-| [er ((wen —8)..) (Why) (Wer —Ur])) Ex wrdoudt< fF (n=2).) (v= My (\ver-8r))):(\ver —Ur “ — ver —Ur|) dadt