828 CHAPTER 39. STATISTICAL TESTS

It follows from the vanishing of the mixed term that 39.11 equals

n

∑k=1

(Xk− (α +β (tk− t̄)))2

σ2

=n

∑k=1

(Xk−

(α̂ + β̂ (tk− t̄)

))2+(

α̂ + β̂ (tk− t̄))− (α +β (tk− t̄))2

σ2

=1

σ2 ∑k

(α̂ + β̂ (tk− t̄)

)− (α +β (tk− t̄))2 +

nσ̂2

σ2

=1

σ2 ∑k

((α̂−α)+

(β̂ −β

)(tk− t̄)

)2+

nσ̂2

σ2

Consider the mixed term in the first sum.

∑k(α̂−α)

(β̂ −β

)(tk− t̄) = 0

Therefore, from 39.11,n

∑k=1

(Xk− (α +β (tk− t̄)))2

σ2 =

nσ2 (α̂−α)2 +

(β̂ −β

)2

σ2 ∑k(tk− t̄)2 +

nσ̂2

σ2 (39.13)

At this point, we need to consider what we have.

Lemma 39.5.2 Suppose Xi is n(µ i,σ

2i)

and the Xi are independent for i≤ n. Then ∑i aiXi

is n(∑i aiµ i,∑a2

i σ2i).

Proof:Consider the moment generating function.

M (t) ≡ E

(exp

(t ∑

iaiXi

))= E

(n

∏i=1

exp(taiXi)

)

=n

∏i=1

E (exp(taiXi)) =n

∏i=1

e12 t2a2

i σ2i etaiµ i

= e12 t2(∑i a2

i σ2)et ∑i aiµ i ■

Thus α̂ = X̄ is n(

1n ∑

ni=1 (α +β (ti− t̂)) ,∑i

1n2 σ2

)= n

(α, σ2

n

). Also α̂−α

(σ/√

n) =X̄−α

(σ/√

n) isn(0,1) and so the square root of the first term on the right in 39.13 is n(0,1) so that firstterm is X 2 (1). Similarly, consider the second term or rather its square root. This is

β̂ −β(σ/(

∑k (tk− t̄)2)1/2

) (39.14)

828 CHAPTER 39. STATISTICAL TESTSIt follows from the vanishing of the mixed term that 39.11 equalsx (Xi — (or Bie)A(xi (es iis-n))+ (@+B(n-)) (a+ B(u-1))k=l o1 ok - a2= Geb (4+ Bn) (+B —1 +e1 . * 2 ne= Geb (@-a)+(B-B) a) +Consider the mixed term in the first sum.Y(@- a) (B-B) (n-7) =0kTherefore, from 39.11,(Xe — (+B (tu -7)))? _k=l oO?n 2p-B 52n _ no52 | al -*) Va +s (39.13)At this point, we need to consider what we have.Lemma 39.5.2 Suppose X; isn (u;,0 7) and the X; are independent for i <n. Then Y;.a;Xjisn (Di ail;, a; 07 ) .Proof:Consider the moment generating function.£ (00 (1 La «)) =E (Te wa)me 12 02ILE (exp (ta;X;)) = ] Je?" %i=1 i=11_ ext (Lido) ot Liaibt; |M(t)2ojakiAo: P 2 Ra:Thus &@ = X isn (; *1(a+B (t—-f)),¥; 40°) =n (a, a). Also oh = = GAD isn(O,1) and so the square root of the first term on the right in 39.13 is n(0,1) so that firstterm is 27 (1). Similarly, consider the second term or rather its square root. This isb-B(0/ (tun —7")"")(39.14)