2718 CHAPTER 79. INCLUDING STOCHASTIC INTEGRALS

Now, the coercivity condition 3 shows that if y ∈ V , then

⟨zn (t,ω) ,un (t,ω)− y(t,ω)⟩ ≥ b3 ||un (t,ω)||pV −b4 (t,ω)−λ |un (t,ω)|2H−(

b1 ||un (t,ω)||p−1 +b2 (t,ω))||y(t,ω)||V .

Using p−1 = pp′ , where 1

p +1p′ = 1, the right-hand side of this inequality equals

b3 ||un (t,ω)||pV −b4 (t,ω)−b1 ||un (t,ω)||p/p′ ||y(t,ω)||V−b2 (t,ω) ||y(t,ω)||V −λ |un (t,ω)|2H ,

the last term being bounded by a function in L1 ([0,T ]×Ω) by assumption. Thus thereexists cy (·, ·) ∈ L1 ([0,T ]×Ω) and a positive constant C such that

⟨zn (t,ω) ,un (t,ω)− y(t,ω)⟩ ≥ −cy (t,ω)−C ||y(t,ω)||pV . (79.4.66)

Letting y = u, we use Fatou’s lemma to write

lim infn→∞

∫Ω

∫ T

0

(⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩+ cu (t,ω)+C ||u(t,ω)||pV

)dtdP≥

∫Ω

∫ T

0lim inf

n→∞⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩+

(cu (t,ω)+C ||u(t,ω)||pV

)dtdP

≥∫

∫ T

0

(cu (t,ω)+C ||u(t,ω)||pV

)dtdP.

Here, we added the term cu (t,ω) +C ||u(t,ω)||pV to make the integrand nonnegative inorder to apply Fatou’s lemma. Thus,

lim infn→∞

∫Ω

∫ T

0⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩dtdP≥ 0.

Consequently, using the claim in the last inequality,

0 ≥ lim supn→∞

⟨zn,un−u⟩V ′,V

≥ lim infn→∞

∫Ω

∫ T

0⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩dtdP

≥∫

∫ T

0lim inf

n→∞⟨zn (t,ω) ,un (t,ω)−u(t,ω)⟩dtdP≥ 0

hence, we find thatlimn→∞⟨zn,un−u⟩V ′,V = 0. (79.4.67)

We need to show that if y is given in V then

lim infn→∞⟨zn,un− y⟩V ′,V ≥ ⟨z(y) ,u− y⟩ V ′,V , z(y) ∈ Âu

2718 CHAPTER 79. INCLUDING STOCHASTIC INTEGRALSNow, the coercivity condition 3 shows that if y € Y, then(zn (t,@) ,un (t,@)—y(t,@)) > ds|lun(t,@)|Ip —b4 (t,@) — A lun (¢,@)|7= (1 lle (1,0)?! +b2(¢,0)) Il, @)lly-Using p—1= rE where — + a = |, the right-hand side of this inequality equalsiPb3||dn (t,@)|If, ba (t,) br ||tn (t,@)||""” |ly(,) lly—bo (t,00)||y(t,0)|ly —A [tn (t,@) lithe last term being bounded by a function in L' ([0,7] x Q) by assumption. Thus thereexists cy (-,-) € L! ([0,7] x Q) and a positive constant C such that(én (1) ,un(t,) —y(t,€)) > —¢y (t,) —C|ly (1,0) ||P (79.4.66)Letting y = u, we use Fatou’s lemma to writen—s0o. . Tr Pplim int [| ((<n (t,@) , tty (t,@) —u(t,0)) +cy(t,@) +C||u(t,@)||?) dtdP >n—-eoo[, [tim nt. (en (¢.00) um (t,0) —u(t, 0) + (Cu (1500) +C l(t.) |) dea[f° (cy (t,) +C||u(t,00)||?) draHere, we added the term c, (t,@)+C||u(t,@)||f to make the integrand nonnegative inorder to apply Fatou’s lemma. Thus,Tlim int [ [ (<n (t,@) , tp (t,) —u(t,@))dtdP > 0.Q/0Nn—pooConsequently, using the claim in the last inequality,0 > limsup (zn,Un —u) yyn—oT> lim inf / | (zn (t,@) Up (t, 0) —u(t,@))dtdPnee Jo JOT> | lim inf (zp (t, 0) , up (t,) — u(t, ))dtdP > 0QJo nehence, we find thatlim (Zn,Un —U)yry = 0. (79.4.67)n—yooWe need to show that if y is given in VY thenAlim inf (Zn,un —Y) vty 2 (z(y) My) yys zy) © Au