2704 CHAPTER 79. INCLUDING STOCHASTIC INTEGRALS

≤∫ t

0

(C+C |v|2H

)ds+C ( f ,w0,ω)+M∗ (t)

Using compactness of the embedding of V into W, we can simplify this to an inequality ofthe following form where this involves modifying the constants C.

12|v(t)|2H +2α

∫ t

0∥v∥2

V ds+12∥w(t)∥2

V

≤∫ t

0

(C+C |v|2H

)ds+C ( f ,w0,ω)+M∗ (t)

Then, since the functions on the right are increasing in t, we can modify the constants againand obtain an inequality of the form

sups≤t|v(s)|2H + sup

s≤t∥w(t)∥2

V +α

∫ t

0∥v∥2

V ds

≤∫ t

0

(C+C |v|2H

)ds+C ( f ,w0,ω)+CM∗ (t)

Take expectations using the Burkholder Davis Gundy inequality and estimates for σ andobtain

E(

sups≤t|v(s)|2H

)+E

(sups≤t∥w(t)∥2

V

)+E

∫ t

0∥v∥2

V ds)

≤∫ t

0E(

C+C(

supτ≤s|v(τ)|2H

))ds

+C ( f ,w0)+C∫

(∫ t

0

((C+C |v|H)

2 supτ≤s|v(τ)|2H

))1/2

dP

≤∫ t

0E(

C+C(

supτ≤s|v(τ)|2H

))ds+C ( f ,w0)

+C∫

supτ≤t|v(τ)|H

(∫ t

0

(C+C |v|2H

))1/2

dP

Using Cauchy Schwarz inequality one can simplify the above to

E(

sups≤t|v(s)|2H

)+E

(sups≤t∥w(t)∥2

V

)+E

∫ t

0∥v∥2

V ds)

≤ C ( f ,w0,T )+C∫ t

0E(

supτ≤s|v(τ)|2H

)ds

Then Gronwall’s inequality implies

E(

sups≤t|v(s)|2H

)+E

(sups≤t∥w(t)∥2

V

)+E

∫ t

0∥v∥2

V ds)≤C ( f ,w0,T ) (79.3.39)

2704 CHAPTER 79. INCLUDING STOCHASTIC INTEGRALS<[ (C-+C|v|z,) ds-+C(f, wo, 0) +M* (1)Using compactness of the embedding of V into W, we can simplify this to an inequality ofthe following form where this involves modifying the constants C.I 2 ae 1 25 Ola +20 f Iiipds+5 lw Oli<[ (C-+C|v|j,) ds-+C(f, wo, 0) +M* (1)Then, since the functions on the right are increasing in t, we can modify the constants againand obtain an inequality of the formt2 2 2sup|v(s)li+sup belly +o [Ive dss<S<t< [ (c+elnli) as+C(F, 0.00) HEM" (9Take expectations using the Burkholder Davis Gundy inequality and estimates for o andobtaintb (suplv li) +2 (supliwenii,) +e (af Ivlkas)s<t s<t 0< [ez (c+e (selva) ) ds+C(f,wo) + [ (f ((c+Ciig)*supiv(e)) a< ['e(c+e(supir(eli,) )as+e(rno)T<St 1/24C soplv( lu ( [ (c+-cWi)) dPQ t<tUsing Cauchy Schwarz inequality one can simplify the above totb (suplvli,) +2 (supliwenii-) +e (a [IolaS<t S<t J0< C(f.wo.T)+¢ [E (supiv(e)i dsTSSThen Gronwall’s inequality impliesE (seplv(i) +E (sup hv oi +E («/ a) <C(f,wo.T) (79.3.39)S<tS<t