77.5. THE MAIN RESULT 2631

Hence, by Fatou’s lemma,

lim infε→0⟨Buε ,uε⟩(T ) = lim inf

ε→0

∑i=1⟨B(uε (T )) ,ei⟩2

≥∞

∑i=1

lim infε→0⟨B(uε (T )) ,ei⟩2

=∞

∑i=1

lim infε→0⟨Buε (T ) ,ei⟩2

=∞

∑i=1⟨Bu(T ) ,ei⟩2

= ⟨B(u(T )) ,u(T )⟩= ⟨Bu,u⟩(T )

From 77.5.56, letting t = T,

lim supε→0⟨u∗ε ,uε⟩V ′,V ≤ lim sup

ε→0

(⟨ f ,uε⟩+

12⟨Bu0,u0⟩−

12⟨Buε ,uε⟩(T )

)≤ ⟨ f ,u⟩V ′,V +

12⟨Bu0,u0⟩−

12⟨Bu,u⟩(T ) = ⟨u∗,u⟩V ′,V

It follows thatlim sup

ε→0⟨u∗ε ,uε −u⟩ ≤ ⟨u∗,u⟩V ′,V −⟨u

∗,u⟩V ′,V = 0

and solim inf

ε→0⟨u∗ε ,uε − v⟩ ≥ ⟨u∗ (v) ,u− v⟩

for any v ∈ V where u∗ (v) ∈ A(u,ω). In particular for v = u. Hence

lim infε→0⟨u∗ε ,uε −u⟩ ≥ ⟨u∗ (v) ,u−u⟩= 0≥ lim sup

ε→0⟨u∗ε ,uε −u⟩

showing that limε→0 ⟨u∗ε ,uε −u⟩= 0. Thus

⟨u∗,u− v⟩ ≥ lim infε→0

(⟨u∗ε ,u−uε⟩+ ⟨u∗ε ,uε − v⟩)

= lim infε→0⟨u∗ε ,uε − v⟩ ≥ ⟨u∗ (v) ,u− v⟩

This implies u∗ ∈ A(u,ω) because if not, then by separation theorems, there exists v ∈ Vsuch that for all w∗ ∈ A(u,ω) ,

⟨u∗,u− v⟩< ⟨w∗,u− v⟩

contrary to what was shown above. Thus this obtains

Bu(t)−Bu0 +∫ t

0u∗ds =

∫ t

0f ds

where u∗ ∈ A(u,ω) . In case Buε (T ) ̸= B(uε (T )) , you do the same argument for T̂ < Twhere Buε

(T̂)= B

(uε

(T̂))

for all ε and for u. Then the above argument shows that

u∗X[0,T̂ ] ∈ A(X[0,T̂ ]u,ω

). This being true for every such T̂ < T implies that it holds on

[0,T ] and shows part of the following theorem which is the main result.

77.5. THE MAIN RESULTHence, by Fatou’s lemma,colim inf (Bue,we)(T) = lim inf Y\ (B(ue (T)) ,e7)°e>0 £0> VW lim inf (B(ue(T)) ,e:)1 €0lim inf (Bue (T) 7)”€0lIipsa(Bu(T) ,ei)”(u(T)) ,u(T)) = (Bu, u) (T)llmnI ISimsFrom 77.5.56, letting t = T,: * . 1 1lim sup (uz ,Ue) yr y < limsup ( Ue) + = (Buo, uo) — = (Bue, Ue) (T))e350 , e50 2 21 1< (fuyry+ 5 (Bug, uo) — 5 (Bu,u) (T) = (uu) yr yIt follows thatlim sup (uz,Ue —u) < (u*,u) yr y — (u* uy yr y =9€>0 ; ,and solim inf (ug ,ue —v) > (u* (v) ,u—v)€é0for any v € VY where u* (v) € A (u, @). In particular for v = u. Hencelim inf (ue,ue —u) > (u* (v) ,u—u) =0 > lim sup (uz, ue — u)e+0 €0showing that lime_,o (ug, ue — u) = 0. Thus(u*,u—v) > lim inf ((ug,u—ue) + (up, Ue — V))e—0= lim inf (ui,ue —v) > (u* (v) ,u—v)e—02631This implies u* € A (u,@) because if not, then by separation theorems, there exists v EC Vsuch that for all w* € A (u,@),(u*,u—v) < (w*,u—v)contrary to what was shown above. Thus this obtainst tBu(t) —Buo+ [ wds= | fds0 0where u* € A(u,@). In case Bug (T) 4 B(ue (T)), you do the same argument for 7 < Twhere Bug (T) =B (ug (T)) for all € and for u. Then the above argument showue 200] cA (Zo a" 0). This being true for every such f < T implies that it hol(0, 7] and shows part of the following theorem which is the main result.s thatds on