2630 CHAPTER 77. STOCHASTIC INCLUSIONS
Also12⟨Buε ,uε⟩(T )−
12⟨Bu0,u0⟩+ ⟨u∗ε ,uε⟩+ ε ⟨Fuε ,uε⟩= ⟨ f ,uε⟩
Assume T is such that
⟨Buε ,uε⟩(T ) = ⟨B(uε (T )) ,uε (T )⟩ , Buε (T ) = B(uε (T ))
for all ε in the sequence converging to 0 and also
Bu(T ) = B(u(T )) ,⟨Bu,u⟩(T ) = ⟨B(u(T )) ,u(T )⟩
If not, carry out the argument for T̂ close to T for which this condition does hold. We havethe integral equation
Buε (t)−Bu0 +∫ t
0u∗ε ds+
∫ t
0εFuε ds =
∫ t
0f ds
and so Buε (t) converges to Bu(t) in U ′ weakly. This follows right away from the conver-gence of (Buε)
′ in the above. Also from the above equation,
Bu(t)−Bu0 +∫ t
0u∗ds =
∫ t
0f ds
Thus
Bu(0) = Bu0
(Bu)′+u∗ = f in U ′
Since V ′ ⊆U ′,
12⟨Bu,u⟩(t)− 1
2⟨Bu0,u0⟩+
∫ t
0⟨u∗,u⟩V ′,V ds =
∫ t
0⟨ f ,u⟩ds
Also12⟨Buε ,uε⟩(t)−
12⟨Bu0,u0⟩+
∫ t
0⟨u∗ε ,uε⟩V ′,V ds
+∫ t
0⟨εFuε ,uε⟩ds =
∫ t
0⟨ f ,uε⟩ds (77.5.56)
Now let {ei} be the vectors of Lemma 77.3.4 where these are in U . Thus
⟨Buε ,uε⟩(T ) =∞
∑i=1⟨B(uε (T )) ,ei⟩2