2576 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS

−∫ t

0⟨Bσ (u1)−Bσ (u2) ,σ (u1)−σ (u2)⟩L2

ds≤M∗ (t)

where the right side is of the form sups∈[0,t] |M (s)| where M (t) is a local martingale havingquadratic variation dominated by

C∫ t

0∥σ (w1)−σ (w2)∥2 ⟨B(u1−u2) ,u1−u2⟩ds (76.5.59)

Then by assumption and using Gronwall’s inequality, there is a constant C = C (λ ,K,T )such that

⟨B(u1−u2) ,u1−u2⟩(t)≤CM∗ (t)

Then also, since M∗ is increasing,

sups∈[0,t]

⟨B(u1−u2) ,u1−u2⟩(s)≤CM∗ (t)

Taking expectations and from the Burkholder Davis Gundy inequality,

E

(sup

s∈[0,t]⟨B(u1−u2) ,u1−u2⟩(s)

)

≤ C∫

(∫ t

0∥σ (w1)−σ (w2)∥2 ⟨B(u1−u2) ,u1−u2⟩

)1/2

dP

≤C∫

sups∈[0,t]

⟨B(u1−u2) ,u1−u2⟩1/2 (s)(∫ t

0∥σ (w1)−σ (w2)∥2

)1/2

dP

Then it follows after adjusting constants that there exists an inequality of the form

E

(sup

s∈[0,t]⟨B(u1−u2) ,u1−u2⟩(s)

)≤CE

(∫ t

0∥σ (w1)−σ (w2)∥2

L2ds)

Hence

E

(sup

s∈[0,t]⟨B(u1−u2) ,u1−u2⟩(t)

)≤CK2E

(∫ t

0∥w1−w2∥2

W ds)

Thus, for each t ≤ T∫Ω

⟨B(u1−u2) ,u1−u2⟩(t)dP≤CK2E(∫ t

0∥w1−w2∥2

W ds)

one can consider the map ψ (w)≡ u as described above. Then the above inequality implies

E (⟨B(ψnw1−ψnw2) ,ψ

nw1−ψnw2⟩(t))

≤ CK2E(∫ t

0

∥∥ψn−1w1−ψ

n−1w2∥∥2

W dt1

)

2576 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS-[ (Bo (u1) — Bo (u2) 6 (ur) — 6 (ua)) a, ds <M* (0)where the right side is of the form sup,<jo,) |M (s)| where M (1) is a local martingale havingquadratic variation dominated bytc| Ilo (w1) — 0 (w2)||2 (B (uy — up) 5 —up) ds (76.5.59)Then by assumption and using Gronwall’s inequality, there is a constant C= C(A,K,T)such that(B (uy — U2), uy — u2) (t)< CM* (t)Then also, since M* is increasing,sup (B(u; —u2) ,uy — uz) (s) < CM* (t)s€(0,t]Taking expectations and from the Burkholder Davis Gundy inequality,E ( sup (B(u, — uz) ,u) — U2) )sE[0,2]< cf, (f lo (1) — 6 (ws) |? (B (ay — ua) an -u)) a1/2£€ [sup (8(01 10) 10)" (6) ( [io on) on) *) dPs€[0,tThen it follows after adjusting constants that there exists an inequality of the formE ( sup (B (uy — U2) , 4) — U2) 0) <CE (/ lo (wi) — 0 (w2)|I'%, as)s€[0,t]Hences€(0,2]E| sup (B(u, —u2),u; —u2) 0) <CK°E (f \|w1 -walfivas)Thus, for each t < T[Glu =12) 11 we) (QaP < CRE (/' bw: - wallaone can consider the map y(w) = was described above. Then the above inequality impliesE((B(y"wi — yw), yw — y"wr) (1)< CRE (f ye vale