2558 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS

Now using the Burkholder Davis Gundy inequality as before and taking the expectation,

E

(sup

s∈[0,t]⟨Bun,un⟩(s)

)+E

∫ t

0∥un∥p

V ds

≤ C+C∫

(∫ t

0∥Φn∥2

L2∥Bun∥2

W ds)1/2

dP

≤ C+C∫

(∫ t

0∥Φn∥2

L2⟨Bun,un⟩ds

)1/2

dP

≤ C+C∫

sups∈[0,t]

⟨Bun,un⟩1/2 (s)(∫ t

0∥Φn∥2

L2ds)1/2

dP

Then adjusting the constants and using the approximation properties of Φn given above,there is a constant C independent of n, t ≤ T such that

E

(sup

s∈[0,t]⟨Bun,un⟩(s)

)+E

∫ t

0∥un∥p

V ds≤C

In particular

E

(sup

s∈[0,T ]⟨Bun,un⟩(s)

)+E

∫ T

0∥un∥p

V ds≤C (76.4.32)

Next use monotonicity to obtain

12⟨Bur−Buq,ur−uq

⟩(t) ≤ 1

2

∫ t

0

((Φr−Φq)◦ J−1)∗B(ur−uq)◦ JdW

+Cλ

∫ t

0

⟨Bur−Buq,ur−uq

⟩ds+

∫ t

0

∥∥Φr−Φq∥∥2 ds

and so, from Gronwall’s inequality, there is a constant C which is independent of r,q suchthat ⟨

Bur−Buq,ur−uq⟩(t)≤CMrq (t)≤CM∗rq (T )+C

∫ t

0

∥∥Φr−Φq∥∥2 ds

where Mrq refers to that local martingale on the right. Thus also

supt∈[0,T ]

⟨Bur−Buq,ur−uq

⟩(t)≤CMrq (t)≤CM∗rq (T )+C

∫ T

0

∥∥Φr−Φq∥∥2 ds (76.4.33)

Taking the expectation and using the Burkholder Davis Gundy inequality again, and similarestimates to the above, using appropriate stopping times as needed, we obtain

E

(sup

t∈[0,T ]

⟨Bur−Buq,ur−uq

⟩(t)

)≤C

∫Ω

∫ T

0

∥∥Φr−Φq∥∥2 dtdP

2558 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONSNow using the Burkholder Davis Gundy inequality as before and taking the expectation,tE ( sup 2m) +E | llunllf dsse[0,z]fat 1/22 2< cxe[}([lenli|iBullias) apt 1/2< ce ( [eal Bunun) ds) dPQ 0t 1/2< C+C] sup (Buy,un)'/? (s) (/ 2,248) dP2 se(0,4] 0Then adjusting the constants and using the approximation properties of ®, given above,there is a constant C independent of n,t < T such thattE( sup (Bunstn)(s) +E [ |ul-ds <Cs€(0,t] 0In particularTE| sup (Buy,un) (s) +E | Ilan || ds <C (76.4.32)s€(0,7] 0Next use monotonicity to obtain1 1 ft _1y\*3 (Bur — Bug, tr — Ug) (t) < >| ((®, —®,) oJ )" B (uy — ug) oJdWt t+c, [ (Bur — Bug, ttr—ug)ds-+ | \|&,— Bg || as0 0and so, from Gronwall’s inequality, there is a constant C which is independent of r,g suchthatt(Buy — Bug, Uy — Ug) (t) < CM rq (t) <M, (7) +¢ | ||, —&,||" dswhere M,, refers to that local martingale on the right. Thus alsoTsup (Bu; — Bug, uy — Ug) (t) <CMyq (t) <cm;,(1)+¢ | ||, —&,||" ds (76.4.33)t€(0,T] 0Taking the expectation and using the Burkholder Davis Gundy inequality again, and similarestimates to the above, using appropriate stopping times as needed, we obtainte[0,T]Te( sup (Bu, — Bug, Uy — Ug) 0) <c[ | |b, — &,|| ataPQJo