770 CHAPTER 38. PROBABILITY

also exists. This is left as an exercise. Let DR be the quarter circle centered at (0,0) withradius R. Then using polar coordinates to write

∫DR

e−(x2+y2)dx,

I2R =

∫ R

0

∫π/2

0e−r2

rdθdr+∫ R

0

∫ R√

R2−x2e−(x2+y2)dydx

That second integral satisfies

0 ≤∫ R

0

∫ R√

R2−x2e−(x2+y2)dydx≤

∫ R

0

∫ R√

R2−x2e−(x2+R2−x2)dydx

≤∫ R

0

∫ R

0e−R2

dydx = R2e−R2

which converges to 0 as R→ ∞. Therefore,

I2 = limR→∞

∫ R

0

∫π/2

0e−r2

rdθdr = limR→∞

π

2−e−r2

2|R0 =

π

4

and so I =√

π

2 . Then the other integral is obviously equal to√

π . ■An alternative way to establish this integral is as follows.

F (x) ≡(∫ x

0e−t2

dt)2

,F ′ (x) = 2∫ x

0e−t2

dte−x2

= 2x∫ 1

0e−x2t2

dte−x2=∫ 1

02xe−x2(t2+1)dt

F (x) =∫ x

0

∫ 1

02ye−y2(t2+1)dtdy =

∫ 1

0

∫ x

02ye−y2(t2+1)dydt

=∫ 1

0

(−e−y2(t2+1)

t2 +1|x0

)

=∫ 1

0

(1

1+ t2 −e−x2(t2+1)

t2 +1

)dt =

π

4− e(x)

where |e(x)|< e−x2. It follows on taking a limit that

(∫∞

0 e−t2dt)2

= π

4 .

Corollary 38.1.2 Γ(1/2) =√

π

Proof: By definition it is∫

0 e−tt−1/2dt. Let t = u2 so dt = 2udu. Then, changing thevariables,

Γ(1/2) =∫

0e−u2

u−12udu = 2∫

0e−u2

du = 212√

π =√

π ■

7710 CHAPTER 38. PROBABILITYalso exists. This is left as an exercise. Let Dr be the quarter circle centered at (0,0) with: . . . _ (2442radius R. Then using polar coordinates to write Jp, (e4y dx,2 er x+y?)I “ff “raadr+ | Lae! dydxThat second integral satisfiesR opR 5 R opR +p0 < | / e (Pg dx < | / eo (PR) ayJQ) J a/R? vans 0 Jy/R2—x2 »R pR oy< [fer dydx = R?e*®0 Jowhich converges to 0 as R — o0. Therefore,m/2 9 . Te" 2 tPr yin [Pf ee ntodr= fim Sif:and so J = ¥>-. Then the other integral is obviously equal to Ju.An alternative way to establish this integral is as follows.“ ° ! SH? x| edt) ,F (1) =2[ e' dte0 01 1= 2x [| ee’ dte* =| 2xe* (P+) at0 0x pl 1[/ aye (Pdtdy = | [ave PO Mayet0 JO 0 JO[ er th) a0 e+) °fi eR) g= —_ d =——i (4: +1 "4 e(x)2where |e (x)| < e-*’. It follows on taking a limit that Ue" edt) =i.F (x)5)“—bs~~"l|Corollary 38.1.2 [(1/2) =./2Proof: By definition it is [f° e't~!/?dt. Let t = u? so dt = 2udu. Then, changing thevariables,oO co 1ra/2)= [| eu udu =2 | edu=2,Va= nl