886 CHAPTER 33. QUADRATIC VARIATION AND STOCHASTIC INTEGRATION
At this point, recall the definition of the covariation. The above equals
14
mn−1
∑k=0
E ( fkgk ([∆Mk +∆Nk]− [∆Mk−∆Nk]))
Rewriting this yields
=14
mn−1
∑k=0
E(
fkgk([(Mτ l )tk+1 +(Nτ l )tk+1 −
((Mτ l )tk +(Nτ l )tk
)]−[(Mτ l )tk+1 − (Nτ l )tk+1 −
((Mτ l )tk − (Nτ l )tk
)]))To save on notation, denote
(Mτ l )tk+1 +(Nτ l )tk+1 −((Mτ l )tk +(Nτ l )tk
)≡ ∆k (Mτ l +Nτ l )
(Mτ l )tk+1 − (Nτ l )tk+1 −((Mτ l )tk − (Nτ l )tk
)≡ ∆k (Mτ l −Nτ l )
Thus the above equals
14
mn−1
∑k=0
E ( fkgk ([∆k (Mτ l +Nτ l )]− [∆k (Mτ l −Nτ l )]))
Now from Corollary 32.4.3,
=14
mn−1
∑k=0
E(
fkgk([∆k (M+N)]τ l − [∆k (M−N)]τ l
))Letting l→ ∞, this reduces to
=14
mn−1
∑k=0
E ( fkgk ([∆k (M+N)]− [∆k (M−N)]))
=14
(∫Ω
∫ t
0f g(d [M+N]−d [M−N])
)=
∫Ω
∫ t
0f gd [M,N]
Now consider the left side of 33.7.
E((∫ t
0f dMτ l ,
∫ t
0gdNτ l
)U
)
≡∫
Ω∑k, j
fkg j ((Mτ l (t ∧ tk+1)−Mτ l (t ∧ tk)) ,(Nτ l(t ∧ t j+1
)−Nτ l (t ∧ t j)
))dP
Then for each ω, the integrand converges as l→ ∞ to
∑k, j
fkg j((M (t ∧ tk+1)−M (t ∧ tk)) ,
(N(t ∧ t j+1
)−N (t ∧ t j)
))