32.6. APPROXIMATION WITH STEP FUNCTIONS 881

Note that it would make no difference in terms of the conclusion of this lemma if youdefined

f lk (t)≡

mk

∑j=1

f(

tkj−1

)X(tk

j−1,tkj ](t)

because the modified function equals the one given above off a countable subset of [0,T ] ,the union of the mesh points. One could change f r

k similarly with no change in the conclu-sion.

Proof: Let f be 0 off (0,T ). Thus we will let it be defined on all of R. Let γn (t) ≡k/2n,δ n (t) ≡ (k+1)/2n, where t ∈ (k/2n,(k+1)/2n], and 2−n < δ . Thus γn (t) is theclosest k2−n,k ∈ Z which is smaller than or equal to t while δ n (t) is the closest k2−n largerthan or equal to t. Let g ∈Cc ((0,T ) ,E) so the support of g is in [δ ,T −δ ] for some δ > 0such that

∫[δ ,T−δ ]C

∥ f∥p dt < ε and also

∫ T

0∥ f −g∥p dt =

∫R∥ f −g∥p dt < ε.

Then ∫ T

0

∫ T

0∥ f (γn (u− s)+ s)−g(γn (u− s)+ s)∥p

E dsdu

=∫ T

0

∫ T

0∥ f (γn (u− s)+ s)−g(γn (u− s)+ s)∥p

E duds

=∫ T

0

∫ T−s

−s∥ f (γn (t)+ s)−g(γn (t)+ s)∥p

E dtds

≤∫ T

0

∫ 2T

−2T∥ f (γn (t)+ s)−g(γn (t)+ s)∥p

E dtds

=∫ 2T

−2T

∫ T

0∥ f (γn (t)+ s)−g(γn (t)+ s)∥p

E dsdt

≤∫ 2T

−2T

∫R∥ f (γn (t)+ s)−g(γn (t)+ s)∥p

E dsdt < 5T ε

No effort is made to get the best possible estimate in the above. Then∫ T

0

∫ T

0∥ f (γn (u− s)+ s)− f (u)− (g(γn (u− s)+ s)−g(u))∥p

E duds

≤ 2p−1∫ T

0

∫ T

0

(∥ f (γn (u− s)+ s)−g(γn (u− s)+ s)∥p

E+∥ f (u)−g(u)∥p

E

)duds

≤ 2p−1ε5T +2p−1

εT = 2p−16εT (32.14)

It follows that if n is chosen large enough, then∫ T

0

∫ T

0∥g(γn (u− s)+ s)−g(u)∥p

E duds < εT

32.6. APPROXIMATION WITH STEP FUNCTIONS 881Note that it would make no difference in terms of the conclusion of this lemma if youdefinedAO=VF (4) carej=lbecause the modified function equals the one given above off a countable subset of [0,7] ,the union of the mesh points. One could change ff similarly with no change in the conclu-sion.Proof: Let f be 0 off (0,7). Thus we will let it be defined on all of R. Let y, (t) =k/2”,6n(t) = (k+1)/2", where t € (k/2",(k+1) /2"], and 2" < 6. Thus y, (t) is theclosest k2~",k € Z which is smaller than or equal to t while 6, (¢) is the closest k2~” largerthan or equal to t. Let g € C. ((0,T) ,E) so the support of g is in [6,T — 6] for some 6 > 0such that fis -_ gc || f ||? dt < € and also‘T 1[ ip-sitar= [iir-sirar<e.0 RThenT pT[fl Wt nu-s)+3) 8% (us) +5)|lbdsdu0 JO= Ff ipne-s+5) er, u-9) + 9)lfedudsT pT—s- LL, If (Y(t) +5) — 8 (% (¢) +5) lle dts< [ [rn +8) -e(an (+5) Bara2T T= ff Wn @+9)-8(% +5) leasar—2T JOlA2T ¢/ i If (Yn (t) +5) — 8 (% (t) +5) ||2 dsdt < STE—2T JRNo effort is made to get the best possible estimate in the above. ThenT pT[fbn us) +3) FW) ~ (etm u=3) +5) —8(w) |B duds“1 [TT (MW (u—s) +5) —8(% (us) +5) 12<2 ‘| [ ( +f) —gw)lle ° ) das<2?-le5T +2? leT = 2?-l6eT (32.14)It follows that if n is chosen large enough, thenT pT[ f leQuu-s)+s)-ew)liRauds < et