278 CHAPTER 11. INTEGRATION ON MANIFOLDS
3.) limx→0
∣∣∣y|x|r −rx|x|
∣∣∣2 = limx→0
(|x|2r2 |y|2 + r2−2(x ·y)
)= r2.
4.)|ay+b|=(
a2 |y|2 +2a(y ·b)+ |b|2)1/2
and so
∇y |ay+b|= 12
(|ay+b|2
)−1/2 (2a2y1 +2ab1, ...,2a2yn +2abn
)=
1|ay+b|
(a2y1 +ab1, ...,a2yn +abn
)=
1|ay+b|
(a2y+ab
)= a
ay+b
|ay+b|
5.) Say n > 2. The other case will be similar. From 4.) and the chain rule,
∇y
(|ay+b|−(n−2)
)=−(n−2) |ay+b|−(n−1)
∇y |ay+b|
=−(n−2) |ay+b|−(n−1) aay+b
|ay+b|=−(n−2) |ay+b|−n a(ay+b)
Then ∇y ·∇y
(|ay+b|−(n−2)
)=
n(n−2) |ay+b|−(n+1)∇y |ay+b| ·a(ay+b)−a(n−2) |ay+b|−n
∇y · (ay+b)
= n(n−2) |ay+b|−(n+1) aay+b
|ay+b|·a(ay+b)−a(n−2) |ay+b|−n an
= n(n−2)a2 |ay+b|−(n+1) |ay+b|2
|ay+b|−a2 (n−2)n |ay+b|−n = 0
In case n = 2 it works similarly. Thus if x ̸= 0,∆ψx = 0 = ∆rx. In case x= 0 and bmight not be defined, there is nothing to show because ψ0 is a constant. This shows 5.)since both functions fit into the above situation. ■
Now let B(x,ε)≡ Bε be a small ball inside U and let Vε be the region between them.
U
x Vε
Note that when |y|= r,∣∣∣∣y |x|r− rx|x|
∣∣∣∣2 = r2 |x|2
r2 +r2 |x|2
|x|2−2y ·x= |y−x|2 .
Lemma 11.7.3 Let v(y) ≡ rx (y)−ψx (y). Thus v = 0 on ∂U. Then ∇yv ·n ≡ ∂v∂n =
(n−2)r|x|2−r2
|y−x|n if n > 2 and ∂v∂n = 1
rr2−|x|2
|y−x|2if n = 2. This is on ∂B(0,r).
∣∣∣ ∂ψx
∂n
∣∣∣ is uniformly
bounded on ∂Bε for all ε small enough.