INDEX 2747

perturbation, 924set valued, 850single valued, 823something which isn’t, 825sum, 856, 859, 1568sum of, 855sum with densely defined max mono-

tone, 924sum with maximal monotone, 891type M, 826variational inequality, 831variational inequality, sum two opera-

tors, 1568pseudomonotone

onto, 862pseudomonotone operator, 852, 853, 886, 1567

set valued, 850, 852, 853, 1567

Q Wiener process, 2227quadratic variation, 2169

convergence in probability, 2149fantastic properties, 2141

quasi-bounded, 886, 930quotient space, 1471

Rademacher’s theorem, 942, 949, 954, 962,1241, 1243

Radon measure, 259, 407Radon Nikodym

Radon measures, 1093Radon Nikodym derivative, 600Radon Nikodym property, 679Radon Nikodym Theorem

σ finite measures, 600finite measures, 597

Radon Nikodym theoremRadon Measures, 1093

random variable, 971, 1856distribution measure, 260

random vector, 1856independent, 1883

real Schur form, 89recognizing a martingale

stopping times, 2115refinement of a cover, 421

reflexive Banach Space, 451reflexive Banach space, 617region, 1629regular, 259regular measure, 279regular measure space, 407regular topological space, 165regular values, 754relative topology, 1061removable singularity, 1636representation of martingales, 2309residue, 1673resolvent, 579resolvent set, 1699, 1712retract, 368, 372

Banach space, 429closed and convex set, 429

Reynolds transport formula, 1034Riemann criterion, 46Riemann integrable, 46Riemann integral, 46Riemann sphere, 1599Riemann Stieltjes integral, 46Riesz map, 522Riesz representation theorem, 683

C0 (X), 632Hilbert space, 521locally compact Hausdorff space, 288

Riesz Representation theoremC (X), 631

Riesz representation theorem Lp

finite measures, 611Riesz representation theorem Lp

σ finite case, 617, 687Riesz representation theorem for L1

finite measures, 614right polar decomposition, 92Rouche’s theorem, 1678Runge’s theorem, 1773

Sard’s theorem, 756generalization, 1020

scalars, 177scale of Banach spaces, 1734Schaefer fixed point theorem, 500