INDEX 2747
perturbation, 924set valued, 850single valued, 823something which isn’t, 825sum, 856, 859, 1568sum of, 855sum with densely defined max mono-
tone, 924sum with maximal monotone, 891type M, 826variational inequality, 831variational inequality, sum two opera-
tors, 1568pseudomonotone
onto, 862pseudomonotone operator, 852, 853, 886, 1567
set valued, 850, 852, 853, 1567
Q Wiener process, 2227quadratic variation, 2169
convergence in probability, 2149fantastic properties, 2141
quasi-bounded, 886, 930quotient space, 1471
Rademacher’s theorem, 942, 949, 954, 962,1241, 1243
Radon measure, 259, 407Radon Nikodym
Radon measures, 1093Radon Nikodym derivative, 600Radon Nikodym property, 679Radon Nikodym Theorem
σ finite measures, 600finite measures, 597
Radon Nikodym theoremRadon Measures, 1093
random variable, 971, 1856distribution measure, 260
random vector, 1856independent, 1883
real Schur form, 89recognizing a martingale
stopping times, 2115refinement of a cover, 421
reflexive Banach Space, 451reflexive Banach space, 617region, 1629regular, 259regular measure, 279regular measure space, 407regular topological space, 165regular values, 754relative topology, 1061removable singularity, 1636representation of martingales, 2309residue, 1673resolvent, 579resolvent set, 1699, 1712retract, 368, 372
Banach space, 429closed and convex set, 429
Reynolds transport formula, 1034Riemann criterion, 46Riemann integrable, 46Riemann integral, 46Riemann sphere, 1599Riemann Stieltjes integral, 46Riesz map, 522Riesz representation theorem, 683
C0 (X), 632Hilbert space, 521locally compact Hausdorff space, 288
Riesz Representation theoremC (X), 631
Riesz representation theorem Lp
finite measures, 611Riesz representation theorem Lp
σ finite case, 617, 687Riesz representation theorem for L1
finite measures, 614right polar decomposition, 92Rouche’s theorem, 1678Runge’s theorem, 1773
Sard’s theorem, 756generalization, 1020
scalars, 177scale of Banach spaces, 1734Schaefer fixed point theorem, 500