79.4. STOCHASTIC INCLUSIONS WITHOUT UNIQUENESS ?? 2711

=∫

∫ T

0

∫ T

s

⟨1n

Fun (s,ω) ,φ (r,ω)

⟩drdsdP

+∫

∫ T

0

∫ T

s⟨zn (s,ω) ,φ (r,ω)⟩drdsdP

=∫

∫ T

0

⟨1n

Fun (s,ω) ,∫ T

sφ (r,ω)dr

⟩dsdP

+∫

∫ T

0

⟨zn (s,ω) ,

∫ T

sφ (r,ω)dr

⟩dsdP

Now (s,ω)→∫ T

s φ (r,ω)dr is also in U and so the above weak convergences and esti-mates yield that in the limit, this becomes∫

∫ T

0

⟨z(s,ω) ,

∫ T

sφ (r,ω)dr

⟩U ′,U

dsdP

=∫

∫ T

0

⟨∫ r

0zds,φ (r,ω)

⟩U ′,U

drdP

Thus un must converge in U ′ to

u0−∫ (·)

0zds+

∫ (·)

0f ds+

∫ (·)

0ΦdW

Therefore, when passing to a limit, one obtains from 79.4.44

u(·)−u0 +∫ (·)

0zds =

∫ (·)

0f ds+

∫ (·)

0ΦdW in U ′

ω for a.e. ω (79.4.48)

All functions are continuous except the first so we define it so that the above holds pointwisein t. Thus, with 79.4.44, off a set of measure zero,

un (t)−u0 +1n

∫ t

0Funds+

∫ t

0znds =

∫ t

0f ds+

∫ t

0ΦdW

u(t)−u0 +∫ t

0zds =

∫ t

0f ds+

∫ t

0ΦdW (79.4.49)

Note that these are now equations which hold for each t for ω off a set of measure zero.Then it follows that for a.e. ω∥∥∥∥un (t)+

∫ t

0znds−

(u(t)+

∫ t

0zds)∥∥∥∥

U ′

=

∥∥∥∥1n

∫ t

0Funds

∥∥∥∥U ′≤∫ T

0

1n||Fun||ds (79.4.50)

Let nk > k be the first index such that if l ≥ nk, then∫Ω

∫ T

0

1l||Ful ||dsdP < 4−k

79.4. STOCHASTIC INCLUSIONS WITHOUT UNIQUENESS ?? 2711-[f[ [ ( Fun (s,@),@ (r, 0) )drdsaP+f [ [ (en (s,@) 6 (1, @)) drdsdP-[f[ (* Fun (s,@) _[/ ¢(so)ar) asa+f (sn(s.0) _[/ ¢ce)ar) asaNow (s,@) + [” @(r,@)dr is also in Y and so the above weak convergences and esti-mates yield that in the limit, this becomesT T[ [ € (s, ow), | g(r, a)dr) dsdP; UU-[f[ ([ zds,@ (:0)) drdPUUThus u,, must converge in Y’ to(-) () ()w— | cds-+ | fas+ | @dw0 0 0Therefore, when passing to a limit, one obtains from 79.4.44() () ()u(-) —uo + zds = | fas+ | @dW in %) for ae. w (79.4.48)0 0 0All functions are continuous except the first so we define it so that the above holds pointwiseint. Thus, with 79.4.44, off a set of measure zero,t t| fds+ [ ddw0 01 t tn(t) uo +— [ Funds+ [ ZndsnJo 0t t ‘tt) —uo + zds = i fds +f Dddw (79.4.49)0 0 0Note that these are now equations which hold for each t for @ off a set of measure zero.Then it follows that for a.e. @t t+f Znds — (un f cds)0 01 t[Findsn Jo yLet ny > k be the first index such that if 7 > n;, thenT |iat = |\|Fuj||dsdP < 4-§alo 1U'ry< [ — ||Fun|| ds (79.4.50), on