79.3. AN EXAMPLE 2701

where σ will be of the form given in Theorem 79.2.1. To show existence of a solution tothe above, note that by Theorem 79.2.1, if w ∈ L2 (Ω,C ([0,T ] ;V )) with w progressivelymeasurable, then there exists a unique solution v to the above integral equation 79.3.36.Let ψ (w)(t) = w0 +

∫ t0 vds. Suppose now you have wi ∈ L2 (Ω,C ([0,T ] ;V )) with vi being

the solution corresponding to the fixed wi. Then

v1 (t)− v2 (t)+α

∫ t

0L(v1− v2)(s)ds+

∫ t

0L(w1−w2)ds

+∫ t

0(Nw1−Nw2)ds =

∫ t

0(σ (v1)−σ2 (v2))dW

From the Ito formula,

|v1− v2|2H +2α

∫ t

0∥v1− v2∥2

V ds+∫ t

0

⟨∫ s

0L(w1−w2)dτ,v1 (s)− v2 (s)

⟩ds+

∫ t

0

⟨∫ s

0N (w1)−N (w2)dτ,v1 (s)− v2 (s)

⟩ds = 2

∫ t

0∥σ (v1)−σ2 (v2)∥2

L2ds+M (t)

where the quadratic variation of M (t) is∫ t

0∥σ (v1)−σ2 (v2)∥2

L2|v1− v2|2H ds

Using the estimates and the Lipschitz condition on Q, and letting C be a generic constantdepending on the subscripts, routine manipulations yield an inequality of the form

|v1− v2|2H +2α

∫ t

0∥v1− v2∥2

V ds≤ ε

∫ t

0∥v1 (s)− v2 (s)∥2

V ds

+Cε

∫ t

0

∫ s

0∥w1−w2∥2

V dτds+C∫ t

0|v1− v2|2H ds+M∗ (t)

Letting ε ≤ α, and modifying the constants as needed, Gronwall’s inequality yields aninequality of the form

|v1− v2|2H +α

∫ t

0∥v1− v2∥2

V ds≤Cα,T

∫ t

0

∫ s

0∥w1−w2∥2

V dτds+Cα,T M∗ (t)

Modifying the constants again if necessary, one obtains

sups∈[0,t]

|v1− v2|2H (s)+α

∫ t

0∥v1− v2∥2

V ds≤Cα,T

∫ t

0

∫ s

0∥w1−w2∥2

V dτds+Cα,T M∗ (t)

and now, by the Burkholder Davis Gundy inequality,

E

(sup

s∈[0,t]|v1− v2|2H (s)

)+α

∫ t

0E(∥v1− v2∥2

V

)ds≤

79.3. AN EXAMPLE 2701where o will be of the form given in Theorem 79.2.1. To show existence of a solution tothe above, note that by Theorem 79.2.1, if w € L? (Q,C([0,T];:V)) with w progressivelymeasurable, then there exists a unique solution v to the above integral equation 79.3.36.Let y(w) (t) = wo + Jj vds. Suppose now you have w; € L? (Q,C ([0,7];V)) with v; beingthe solution corresponding to the fixed w;. Thenv1 @—n(+a f Lm =v2)(s)ds+ [Lon —wo)ds+f (Nw; =Nua)ds= [(6 (v1) ~o2 (v2)From the Ito formula,t t SsIn —valiy +20 [ |i —valleds+ [ (/ L(w1 —w2) dT, v4 (3) —v2(6) Jast Ss tae (01) = (3) dr01 (8) —v9(6) Jas =2 f IIo (1) — 02 (v2) [ds + M (0)where the quadratic variation of M (t) is7 2 2[ lotr) -02(02)I/35 [m1 — vali dsUsing the estimates and the Lipschitz condition on Q, and letting C be a generic constantdepending on the subscripts, routine manipulations yield an inequality of the formt tvali +20 f Ij —valiias<e [Ion (s)—m)liiast S t+cef |i —waliidtds +c v1 —va[2,ds-++M* (1)Letting € < a, and modifying the constants as needed, Gronwall’s inequality yields aninequality of the formt t Ssi —valiy + [ |v —vallpds <Casr [Pf lly —w9||2 dtds +Cq.rM* (1)Modifying the constants again if necessary, one obtainst t KYsup in —valiy (9) +0" [ Iv —volltds <Cacr ff lly — wa] dtds + Car M* (1)s€(0,t]and now, by the Burkholder Davis Gundy inequality,tE ( sup |v; —valy 0) +a E (liv —vally) ds <se[0,2]