79.1. THE CASE OF UNIQUENESS 2683
and∫ t
0 ΦndW is continuous and progressively measurable into E hence into V . We can takea subsequence such that ∥Φn−Φ∥L2([0,T ]×Ω;L2(Q1/2U,W)) < 2−n and this will be assumedwhenever convenient.
Note that if Pn is the orthogonal projection onto span( f1, · · · , fn) , then
|PnΦ(y)|W =
∣∣∣∣∣Pn ∑i
∑j
Φi j fi⊗g j (y)
∣∣∣∣∣W
=
∣∣∣∣∣Pn ∑i
∑j
Φi j fi (y,g j)
∣∣∣∣∣W
=
∣∣∣∣∣ n
∑i=1
∑j
Φi j fi (y,g j)
∣∣∣∣∣W
≥
∣∣∣∣∣ n
∑i=1
n
∑j=1
Φi j fi (y,g j)
∣∣∣∣∣W
= |Φn (y)|W
Thus ∣∣∣∣∫ t
sΦndW
∣∣∣∣W≤∣∣∣∣∫ t
sPnΦdW
∣∣∣∣W=
∣∣∣∣Pn
∫ t
sΦdW
∣∣∣∣W≤∣∣∣∣∫ t
sΦdW
∣∣∣∣W.
The following corollary will be useful.
Corollary 79.1.1 Let Φn be as described above. Then
∥Φn (t,ω)∥L2(Q1/2U,W) ≤ ∥Φ(t,ω)∥L2(Q1/2U,W)
where ∥Φn (t,ω)∥L2(Q1/2U,W) ↑ ∥Φ(t,ω)∥L2(Q1/2U,W)
Φ ∈ Lα
(Ω;L∞
([0,T ] ,L2
(Q1/2U,W
)))∩L2
([0,T ]×Ω,L2
(Q1/2U,W
))where α > 2. Then off a set of measure zero, the stochastic integrals
∫ t0 ΦndW satisfy
supn
supt ̸=s
∥∥∫ ts ΦndW
∥∥|t− s|γ
<C (ω) ,γ < 1/2,γ =(α/2)−1
α
Proof: Let, α > 2. As explained above, |∫ r
s ΦndW | ≤ |∫ r
s ΦdW |. Thus by the Burkhol-der Davis Gundy inequality,
supn
∣∣∣∣∫ r
sΦndW
∣∣∣∣≤ ∣∣∣∣∫ r
sΦdW
∣∣∣∣∫
Ω
(∣∣∣∣∫ t
sΦdW
∣∣∣∣)α
dP ≤ C∫
Ω
(∫ t
s∥Φ∥2 dτ
)α/2
dP
≤ C∫
Ω
∥Φ∥α
L∞([0,T ],L2(Q1/2U,H)) |t− s|α/2
≤ C∥Φ∥α
Lα(Ω;L∞([0,T ],L2(Q1/2U,W))) |t− s|α/2
≡ C |t− s|α/2