77.6. VARIATIONAL INEQUALITIES 2635

u∗n→ u∗ weakly in V ′

Pun→ ξ weakly in V ′

Let Λ denote those v ∈ V such that (Bv)′ ∈ V ′ and Bv(0) = 0. Then for v ∈ Λ,⟨(Bun)

′ ,un− v⟩+ ⟨u∗n (·,ω) ,un− v⟩+n⟨P(un (·,ω)) ,un− v⟩= ⟨ f (·,ω) ,un− v⟩

Thus by monotonicity considerations,⟨(Bv)′ ,un− v

⟩+ ⟨u∗n (·,ω) ,un− v⟩+n⟨P(un (·,ω)) ,un− v⟩ ≤ ⟨ f (·,ω) ,un− v⟩ (*)

It follows that

lim supn→∞

⟨P(un (·,ω)) ,un− v⟩ ≤ 0

lim supn→∞

⟨P(un (·,ω)) ,un−u⟩ ≤ ⟨−ξ ,u− v⟩

Now, since Λ is dense, v can be chosen as close as desired to u and hence

lim supn→∞

⟨P(un (·,ω)) ,un−u⟩ ≤ 0

Since P is monotone, in fact the limit exists in the above. Therefore, for any v ∈ Λ and ∗,

lim infn→∞

(⟨P(un (·,ω)) ,un− v⟩)≥ ⟨Pu,u− v⟩

and so⟨Pu,u− v⟩ ≤ 0

for all v ∈ Λ. It follows that Pu = 0 and so u ∈K .Now for v ∈ Λ∩K , monotonicity considerations imply⟨

(Bv)′ ,un− v⟩+ ⟨u∗n (·,ω) ,un−u⟩+ ⟨u∗n (·,ω) ,u− v⟩ ≤ ⟨ f (·,ω) ,un− v⟩

Then

⟨u∗n (·,ω) ,un−u⟩ ≤ ⟨ f (·,ω) ,un− v⟩−⟨(Bv)′ ,un− v

⟩−⟨u∗n (·,ω) ,u− v⟩ (77.6.65)

Then

lim supn→∞

⟨u∗n (·,ω) ,un−u⟩ ≤ ⟨ f (·,ω) ,u− v⟩+⟨(Bv)′ ,v−u

⟩+ ⟨u∗ (·,ω) ,v−u⟩

We assume the existence of a regularizing sequence. If u ∈K there exists ui→ u weaklyin V such that

lim supi→∞

⟨(Bui)

′ ,ui−u⟩V≤ 0

In the above inequality, let v = ui

lim supn→∞

⟨u∗n (·,ω) ,un−u⟩ ≤ ⟨ f (·,ω) ,u−ui⟩+⟨(Bui)

′ ,ui−u⟩+ ⟨u∗ (·,ω) ,ui−u⟩

77.6. VARIATIONAL INEQUALITIES 2635u, — u* weakly in V’Pun — & weakly in V’Let A denote those v € Y such that (Bv)’ € V' and Bv (0) =0. Then for v € A,((Bun)’ un _ v) + (un (-,@) Un — v) +n(P (Un (-,@)) »Un — v) = (fC, @) »Un — v)Thus by monotonicity considerations,((Bv)! un —¥) + (Uy (+, @) tn =v) + (P (Un (+,@)) stn =v) S(F(-,@) stn —v)It follows thatlim sup (P (ttn (+; @)) stn —v) < 0lim sup (P (un (+,@)) stn —u) < (-&,u—v)Now, since A is dense, v can be chosen as close as desired to u and hencelim sup (P (up (-,@)) ,up,—u) <0nooSince P is monotone, in fact the limit exists in the above. Therefore, for any v € A and *,lim inf ((P (up (-,@)) un —v)) > (Pu,u—v)nooand so(Pu,u—v) <0for all v € A. It follows that Pu = 0 and soue %.Now for v € AN.#, monotonicity considerations imply(By)! un —v) + (up (-,@) pun — u) + (uh (-, @) ,u =v) < (f (+, @) , Un — v)(us (-,@) ,Un —u) < (f (-,@) , un — v) — ((Bv)! ,un —v) — (up (-,@),u—v) (7.6.65)Thenlim sup (up (-,@) Un —u) < (f (-,@) ,u—v) + ((Bv)',v—w) + (u" (-,@) »v—u)n—yooWe assume the existence of a regularizing sequence. If u € .% there exists u; + u weaklyin Y such thatlim sup ((Bu;)’ uj — Udy <0iyooIn the above inequality, let v = u;lim sup (ui (-,@) un —u) < (f (-,@) ,w—uj) + ((Buj)’ ,uj —u) + (u* (-,@) uj —u)n—-oo