76.3. THE EXISTENCE OF APPROXIMATE SOLUTIONS 2549

Hence, since ζ = (Bu)′ ,0 =−⟨Bu(0) ,w⟩φ (0)

Then it follows that,⟨Bu(0) ,w⟩= 0. Since w was arbitrary, Bu(0) = 0 and ζ = (Bu)′.Thus, passing to a limit in 76.3.18,

(Bu)′+ξ = f in V ′ω , Bu(0) = 0

It is desired to identify ξ with Ā(ω)u. First let

Lh ≡I− τh

h

Then

Lh (Bu)(t) ={ 1

h∫ t

t−h (Bu)′ ds if t ≥ h1h∫ t

0 (Bu)′ ds if t < h

Then from standard considerations involving approximate identities,

limh→0

Lh (Bu) = (Bu)′ strongly in V ′ω (76.3.19)

Thus ⟨Lh (Buh)− (Bu)′ ,uh−u

⟩=

⟨Lh (Buh)−Lh (Bu) ,uh−u⟩+⟨Lh (Bu)− (Bu)′ ,uh−u

⟩≥

⟨Lh (Bu)− (Bu)′ ,uh−u

⟩and the above strong convergence implies that this converges to 0. Therefore, from 76.3.18,

LhBuh + Āuh = f in V ′ω

and so⟨LhBuh,uh−u⟩+

⟨Āuh,uh−u

⟩= ⟨ f ,uh−u⟩

From the above,⟨(Bu)′ ,uh−u

⟩+⟨Lh (Bu)− (Bu)′ ,uh−u

⟩+⟨Āuh,uh−u

⟩≤ ⟨ f ,uh−u⟩

and so, taking limsuph→0 of both sides, it follows from 76.3.19 that

lim suph→0

⟨Āuh,uh−u

⟩≤ 0, lim sup

h→0

⟨Āuh,uh

⟩≤ ⟨ξ ,u⟩

Since A is monotone and hemicontinuous, the same is true of Ā and so

Āu = ξ

Thus ((Bu)′ (·,ω)

)+ Ā(ω)u(·,ω) = f (·,ω) in V ′ω , Bu(0,ω) = 0 (76.3.20)

76.3. THE EXISTENCE OF APPROXIMATE SOLUTIONS 2549Hence, since 6 = (Bu)’,0 = — (Bu(0),w) 9 (0)Then it follows that,(Bu (0) ,w) = 0. Since w was arbitrary, Bu(0) = 0 and € = (Bu)’.Thus, passing to a limit in 76.3.18,(Bu) +€=fin¥J, Bu(0) =0It is desired to identify € with A (@) u. First letThen |_ f - ff, (Bu) ds ift>ha (Bu) () = { Ve (Bu)' ds ift <hThen from standard considerations involving approximate identities,lim Ly, (Bu) = (Bu)' strongly in ¥ (76.3.19)=Thus(Ln (Buy) — (Bu)! Un — u) =(Lp (Buy) — Lp (Bu) , up — u) + (Lh (Bu) — (Bu) Up — u)> (Ly (Bu) — (Bu)' uy, —u)and the above strong convergence implies that this converges to 0. Therefore, from 76.3.18,Ly,Bup + Au, = fin viand so 7(L,Bun,un —u) + (Aun, un —u) = (fun —u)From the above,((Bu)' , uj, —u) + (Ly (Bu) — (Bu)! uj, —u) + (Auj,, uj, —u) < (fun —u)and so, taking limsup,_,9 of both sides, it follows from 76.3.19 thatlim sup (Aun, uj, —u) <0, limsup (Auj,un) < (§,u)h>0 h>0Since A is monotone and hemicontinuous, the same is true of A and soAu=6éThus((Bu)' (-,@)) +A(@)u(-,@) = f(-,@) in ¥%, Bu(0,@) =0 (76.3.20)