76.3. THE EXISTENCE OF APPROXIMATE SOLUTIONS 2549
Hence, since ζ = (Bu)′ ,0 =−⟨Bu(0) ,w⟩φ (0)
Then it follows that,⟨Bu(0) ,w⟩= 0. Since w was arbitrary, Bu(0) = 0 and ζ = (Bu)′.Thus, passing to a limit in 76.3.18,
(Bu)′+ξ = f in V ′ω , Bu(0) = 0
It is desired to identify ξ with Ā(ω)u. First let
Lh ≡I− τh
h
Then
Lh (Bu)(t) ={ 1
h∫ t
t−h (Bu)′ ds if t ≥ h1h∫ t
0 (Bu)′ ds if t < h
Then from standard considerations involving approximate identities,
limh→0
Lh (Bu) = (Bu)′ strongly in V ′ω (76.3.19)
Thus 〈Lh (Buh)− (Bu)′ ,uh−u
〉=
⟨Lh (Buh)−Lh (Bu) ,uh−u⟩+〈Lh (Bu)− (Bu)′ ,uh−u
〉≥
〈Lh (Bu)− (Bu)′ ,uh−u
〉and the above strong convergence implies that this converges to 0. Therefore, from 76.3.18,
LhBuh + Āuh = f in V ′ω
and so⟨LhBuh,uh−u⟩+
〈Āuh,uh−u
〉= ⟨ f ,uh−u⟩
From the above,〈(Bu)′ ,uh−u
〉+〈Lh (Bu)− (Bu)′ ,uh−u
〉+〈Āuh,uh−u
〉≤ ⟨ f ,uh−u⟩
and so, taking limsuph→0 of both sides, it follows from 76.3.19 that
lim suph→0
〈Āuh,uh−u
〉≤ 0, lim sup
h→0
〈Āuh,uh
〉≤ ⟨ξ ,u⟩
Since A is monotone and hemicontinuous, the same is true of Ā and so
Āu = ξ
Thus ((Bu)′ (·,ω)
)+ Ā(ω)u(·,ω) = f (·,ω) in V ′ω , Bu(0,ω) = 0 (76.3.20)