2544 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS

Lemma 76.3.2 If p≥ 2 and

⟨A(t,u,ω) ,u⟩V ≥ δ ∥u∥pV − c(t,ω) (76.3.11)

∥A(t,u,ω)∥V ′ ≤ k∥u∥p−1V + c1/p′ (t,ω) (76.3.12)

where c≥ 0, c ∈ L1 ([0,T ]×Ω) , then if (t,ω)→ q(t,ω) is in V ,, it follows that for a.e. ω,similar inequalities hold for Ā given by

Ā(t,u,ω)≡ A(t,u+q(t,ω) ,ω) (76.3.13)

Proof: Letting q be progressively measurable, q(t,ω) ∈ V only consider ω such thatt→ q(t,ω) is in Lp (0,T,V ). ⟨

Ā(t,u,ω) ,u⟩=

⟨A(t,u+q(t,ω) ,ω) ,u⟩ = ⟨A(t,u+q(t,ω) ,ω) ,u+q(t,ω)⟩−⟨A(t,u+q(t,ω) ,ω) ,q(t,ω)⟩

≥ δ ∥u+q(t,ω)∥pV − k∥u+q(t,ω)∥p−1

V ∥q(t,ω)∥V − c1/p′ (t,ω)∥q(t,ω)∥V − c(t,ω)

≥ δ ∥u+q(t,ω)∥pV − k∥u+q(t,ω)∥p−1

V ∥q(t,ω)∥V −∥q(t,ω)∥pV −2c(t,ω)

≥ δ

2∥u+q(t,ω)∥p

V −C (k,δ ,T )∥q(t,ω)∥pV −2c(t,ω)

Now∥u+q(t,ω)∥ ≥ ∥u∥−∥q(t,ω)∥

and so by convexity,

∥u+q(t,ω)∥p +∥q(t,ω)∥p

2≥(∥u+q(t,ω)∥+∥q(t,ω)∥

2

)p

≥(∥u∥

2

)p

This implies

∥u+q(t,ω)∥p ≥ 2(∥u∥p

2p −∥q(t,ω)∥p

2

)Therefore, ⟨

Ā(t,u,ω) ,u⟩=

⟨A(t,u+q(t,ω) ,ω) ,u⟩ ≥ δ

2

(2(∥u∥p

2p −∥q(t,ω)∥p

2

))−C (k,δ ,T )∥q(t,ω)∥p

V −2c(t,ω)

≥ δ

2p ∥u∥p− c′ (t,ω)

where c′ ∈ L1 ([0,T ]×Ω).

2544 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONSLemma 76.3.2 If p > 2 and(A(t,u,@) ,u)y > 6 |\ullp —c(¢,@) (76.3.1)A (¢,1, ©) lly <A ljull '+e/” (t,0) (76.3.12)where c >0,c € L' ({0,T] x Q), then if (t,@) + q(t,@) is in V,, it follows that for a.e. @,similar inequalities hold for A given byA(t,u,@) =A(t,u+q(t,@),@) (76.3.13)Proof: Letting g be progressively measurable, q(t,@) € V only consider @ such thatt > q(t, @) is in L? (0,T7,V).(A(t,u,@),u) =(A(t,u+q(t,@),@),u+q(t,@))(A (t,u+q(t,@),@),u)—(A(t,u+q(t,@),@),q(t,@))> 8 |lu+q(t,o)||? —k\lu+q(t,o)||2 | Iq (t,@) ly —cl/” (t,0) lla (t,@) ly —c(¢,@)> d|lut+q(t,@)|If —k\lut+q(t,@) ||P! Iq (t,@) lly —lla(¢,@) || — 2c (t, @),5 > p5 llu+ a(t, )|ly —C(K,8,7) lat.) lly — 2€(t,@)2Nowlu +4 (t,@)|| > \lull — lla@)|and so by convexity,lu +a, Ol? + lla oll? 5 (uta oll+laG@oyl)” . (lull)?2 ~ 2 ~\ 2This impliesp lull? lla (t,@)||"ut g(r.a)|?>2( BE WesTherefore,(A(t,u,@),u) =u||? P(A(t,ut+q(t,@),@),u) > 5(2(4 — le o\ ))—C(k,5,T) ||q(t,@) ||, — 2c (t, @)where c’ € L! ((0,T] x Q).