2540 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONS

Then letting B be a monotone nonnegative, self adjoint operator, B : W →W ′ for W aseparable Hilbert space, consider the linear operator L : L2 (0,T,W )≡W → L2 (0,T,W ′)≡W ′ given as

Lu≡(

I− τh

h

)Bu.

Is it the case that L is monotone? Clearly it is linear and so it suffices to consider ⟨Lu,u⟩W ′,Wwhich equals

1h

∫ T

0⟨Bu(t) ,u(t)⟩dt− 1

h

∫ T

h⟨Bu(t−h) ,u(t)⟩dt

=1h

∫ T

0⟨Bu(t) ,u(t)⟩dt− 1

h

∫ T−h

0⟨Bu(t) ,u(t +h)⟩dt

≥ 1h

∫ T

0⟨Bu(t) ,u(t)⟩dt

−1h

∫ T−h

0

(12⟨Bu(t) ,u(t)⟩+ 1

2⟨Bu(t +h) ,u(t +h)⟩

)dt

=1

2h

∫ T−h

0⟨Bu(t) ,u(t)⟩dt +

1h

∫ T

T−h⟨Bu(t) ,u(t)⟩dt

− 12h

∫ T−h

0⟨Bu(t +h) ,u(t +h)⟩dt

=1

2h

∫ T−h

0⟨Bu(t) ,u(t)⟩dt +

1h

∫ T

T−h⟨Bu(t) ,u(t)⟩dt

− 12h

∫ T

h⟨Bu(t) ,u(t)⟩dt

=1

2h

∫ T−h

h⟨Bu(t) ,u(t)⟩dt +

12h

∫ h

0⟨Bu(t) ,u(t)⟩dt

+1h

∫ T

T−h⟨Bu(t) ,u(t)⟩dt− 1

2h

∫ T

h⟨Bu(t) ,u(t)⟩dt

=12h

∫ T−h

h⟨Bu(t) ,u(t)⟩dt +

1h

∫ T

T−h⟨Bu(t) ,u(t)⟩dt

− 12h

∫ T−h

h⟨Bu(t) ,u(t)⟩dt

+1

2h

∫ h

0⟨Bu(t) ,u(t)⟩dt− 1

2h

∫ T

T−h⟨Bu(t) ,u(t)⟩dt

=1

2h

∫ T

T−h⟨Bu(t) ,u(t)⟩dt +

12h

∫ h

0⟨Bu(t) ,u(t)⟩dt ≥ 0 (76.2.5)

The following is a restatement of Theorem 75.1.13

2540 CHAPTER 76. IMPLICIT STOCHASTIC EQUATIONSThen letting B be a monotone nonnegative, self adjoint operator, B: W — W’ for W aseparable Hilbert space, consider the linear operator L : L? (0,T,W) = W — L? (0,T,W') =W' given asI-T,Lu= | —— ]| Bu.Is it the case that L is monotone? Clearly it is linear and so it suffices to consider (Lu, u) yr ywhich equalsif (Bu(t eres u(t)) dt-if (Bu(t),u wart [ " (Bu(t),u(t-+h)) dt> i ff (autt) wineh_ mh iBu(r).u(oyars Ff ‘ _(Bu(t) u(t))dt= f ~" (Bu(t-+h),u(t-+h)) dtT= a ” (Bu(t )u(hart = | (Bu(t) ,u(t)) dtT-hys * (Bult). u(t)) dt2h Sh“ah (Bu(t )u(oars a [” Bu(e).u(e) at+f (Butt) u an [* (Bu (e),u(0)) atT—-h T_ mid (Bu(t),u(a))dr+ > f (Bu(t).u() dtay (Bult), u(t))dtLf (Bue unas [ ‘ (Bu(t) ,u(t)) dt=a (oul), u(t))dt+ 5, [i (Bu(t) ,u(t)) dt > 0 (16.2.5)The following is a restatement of Theorem 75.1.13