2516 CHAPTER 74. A MORE ATTRACTIVE VERSION
+2∫ t
0⟨BX ,dM⟩+
[R−1BM,M
](t)−a
where a is the limit in probability of the term
qk−1
∑j=1
〈B(∆X (t j)−∆M (t j)) ,∆X (t j)−∆M (t j)
〉(74.6.23)
Let Pn be the projection onto span(e1, · · · ,en) where {ek} is an orthonormal basis for Wwith each ek ∈V . Then using
BX(t j+1
)−BX (t j)−
(BM
(t j+1
)−BM (t j)
)=∫ t j+1
t j
Y (s)ds
the troublesome term of 74.6.23 above is of the form
qk−1
∑j=1
∫ t j+1
t j
〈Y (s) ,∆X (t j)−∆M (t j)
〉ds
=qk−1
∑j=1
∫ t j+1
t j
〈Y (s) ,∆X (t j)−Pn∆M (t j)
〉ds
+qk−1
∑j=1
∫ t j+1
t j
〈Y (s) ,−(I−Pn)∆M (t j)
〉ds
which equals
qk−1
∑j=1
∫ t j+1
t j
〈Y (s) ,X
(t j+1
)−X (t j)−Pn
(M(t j+1
)−M (t j)
)〉ds (74.6.24)
+qk−1
∑j=1
〈B(∆X (t j)−∆M (t j)) ,−( I−Pn)
(M(t j+1
)−M (t j)
)〉(74.6.25)
The reason for the Pn is to get Pn(M(t j+1
)−M (t j)
)in V . The sum in 74.6.25 is dominated
by (qk−1
∑j=1
〈B(∆X (t j)−∆M (t j)) ,(∆X (t j)−∆M (t j))
〉)1/2
·
(qk−1
∑j=1
∣∣〈B( I−Pn)∆M (t j) ,( I−Pn)∆M (t j)〉∣∣2)1/2
(74.6.26)
Now it is known from the above that
qk−1
∑j=1
〈B(∆X (t j)−∆M (t j)) ,(∆X (t j)−∆M (t j))
〉