74.3. THE MAIN ESTIMATE 2507

+2E

(sup

tm∈Pk

∣∣∣∣∫ tm

0

⟨BX l

k ,dM⟩∣∣∣∣)+∥B∥E ([M] (T ))

Now using the Burkholder Davis Gundy inequality and the inequality for the quadraticvariation of that funny integral involving

⟨BX l

k ,dM⟩,

≤ E (⟨BX0,X0⟩)+E (|e(k)|)+2∥Y∥K′ ∥Xrk∥K

+CE

((∫ T

0

∥∥∥BX lk

∥∥∥2d [M]

)1/2)+∥B∥E ([M] (T ))

Now ∥Bv∥2W ′ ≤ ∥B∥⟨Bv,v⟩. Hence the above reduces to the following after adjusting the

constant C,

≤ E (⟨BX0,X0⟩)+E (|e(k)|)+2∥Y∥K′ ∥Xrk∥K

+CE

((∫ T

0

⟨BX l

k ,Xlk

⟩d [M]

)1/2)+∥B∥E ([M] (T ))

≤ 12

suptm∈Pk

⟨BX (tm) ,X (tm)⟩+(C+∥B∥)E ([M] (T ))

+C (E (⟨BX0,X0⟩) ,∥Y∥K′ ,∥Xrk∥K)+E (|e(k)|)

It follows on subtracting the first term on the right and adjusting constants again,

E

(sup

tm∈Pk

⟨BX (tm) ,X (tm)⟩)

≤ (C+∥B∥)E ([M] (T ))+C (E (⟨BX0,X0⟩) ,∥Y∥K′ ,∥Xrk∥K)+E (|e(k)|)

Now let q→ ∞ and use the monotone convergence theorem which yields the above forun-modified X .

Observe that these partitions are nested and that the constant C (· · ·) is continuous andincreasing in each argument with C (0) = 0,C (· · ·) not depending on T . Thus the left sideis increasing and for given ε > 0, there exists N such that k≥ N implies the right side is nolarger than

C (E (⟨BX0,X0⟩) ,∥Y∥K′ ,∥X∥K)+(C+∥B∥)E ([M] (T ))+ ε (74.3.13)

Now let D denote the union of these nested partitions. Then from the monotone conver-gence theorem,

E(

supt∈D⟨BX (t) ,X (t)⟩

)is no larger than the right side of 74.3.13. Since this is true for all ε > 0, it follows

E(

supt∈D⟨BX (t) ,X (t)⟩

)≤C (E (⟨BX0,X0⟩) ,∥Y∥K′ ,∥X∥K ,E ([M] (T ))) (74.3.14)

74.3. THE MAIN ESTIMATE 250742E ( sup [ (extant) + ||B|| E ((M] (T))tnE DPNow using the Burkholder Davis Gundy inequality and the inequality for the quadraticvariation of that funny integral involving (BX| ,dM ) ;< E((BX0,Xo)) +E (le (k)|) +2 [IV lhe Xe llc4CE (( * oxi ato) *) + |\B|)£ (1M) (7)Now ||Bvl;,. < ||B|| (Bv,v). Hence the above reduces to the following after adjusting theconstant C,< E((BXo,Xo)) +E (le(k)|) +2 [I¥ Ilr Xl+CE (( [ (exit) aa) ) + |B) (00 (7)<5 Sup (BK (in) X (tm)) + (C+ IB) (OMIT)+C(E ((BX0,Xo)) [IV llr» Xe lx) +E (le OD)It follows on subtracting the first term on the right and adjusting constants again,tne PxE ( sup (BX n) Xt)< (C+ ||Bl|) E ((M] (T)) +C(E ((BX0,Xo)) 5 II¥ llr» Xe lx) + E (le) I)Now let g — ~ and use the monotone convergence theorem which yields the above forun-modified X.Observe that these partitions are nested and that the constant C(---) is continuous andincreasing in each argument with C (0) = 0,C(---) not depending on T. Thus the left sideis increasing and for given € > 0, there exists N such that k > N implies the right side is nolarger thanC(E ((BXo,Xo)) + |I¥ lle IX Ila) + (C+ IIBII) E (IM) (7) +€ (74.3.13)Now let D denote the union of these nested partitions. Then from the monotone conver-gence theorem,E (sup (BX x)teDis no larger than the right side of 74.3.13. Since this is true for all € > 0, it followsB (sup (BX (7).X (0) ) < CCE (BX. Xo)) oI lqr sXe ECMI(T))) 43.14