2488 CHAPTER 73. THE HARD ITO FORMULA, IMPLICIT CASE
where a is the limit in probability of the term
qk−1
∑j=1
〈B(∆X (t j)−∆M (t j)) ,∆X (t j)−∆M (t j)
〉(73.7.27)
Let Pn be the projection onto span(e1, · · · ,en) where {ek} is an orthonormal basis for Wwith each ek ∈V . Then using
BX(t j+1
)−BX (t j)−
(BM
(t j+1
)−BM (t j)
)=∫ t j+1
t j
Y (s)ds
the troublesome term of 73.7.27 above is of the form
qk−1
∑j=1
∫ t j+1
t j
〈Y (s) ,∆X (t j)−∆M (t j)
〉ds
=qk−1
∑j=1
∫ t j+1
t j
〈Y (s) ,∆X (t j)−Pn∆M (t j)
〉ds
+qk−1
∑j=1
∫ t j+1
t j
〈Y (s) ,−(I−Pn)∆M (t j)
〉ds
which equals
qk−1
∑j=1
∫ t j+1
t j
〈Y (s) ,X
(t j+1
)−X (t j)−Pn
(M(t j+1
)−M (t j)
)〉ds (73.7.28)
+qk−1
∑j=1
〈B(∆X (t j)−∆M (t j)) ,−( I−Pn)
(M(t j+1
)−M (t j)
)〉(73.7.29)
The reason for the Pn is to get Pn(M(t j+1
)−M (t j)
)in V . The sum in 73.7.29 is dominated
by (qk−1
∑j=1
〈B(∆X (t j)−∆M (t j)) ,(∆X (t j)−∆M (t j))
〉)1/2
·
(qk−1
∑j=1
∣∣〈B( I−Pn)∆M (t j) ,( I−Pn)∆M (t j)〉∣∣2)1/2
(73.7.30)
Now it is known from the above that ∑qk−1j=1
〈B(∆X (t j)−∆M (t j)) ,(∆X (t j)−∆M (t j))
〉converges in probability to a ≥ 0. If you take the expectation of the square of the otherfactor, it is no larger than
∥B∥E
(qk−1
∑j=1
∥∥( I−Pn)∆M (t j)∥∥2
W
)