2474 CHAPTER 73. THE HARD ITO FORMULA, IMPLICIT CASE

By definition, M(t j+1

)−M (t j)=

∫ t j+1t j ZdW. Now it follows, on discarding the negative

terms,

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩ ≤ e(k)+2∫ tm

0⟨Y (u) ,X r

k (u)⟩du+

+2∫ tm

0

(Z ◦ J−1)∗BX l

k ◦ JdW +m−1

∑j=0

⟨B∫ t j+1

t j

ZdW,∫ t j+1

t j

ZdW⟩

Therefore,

suptm∈Pk

⟨BX (tm) ,X (tm)⟩ ≤ ⟨BX0,X0⟩+ e(k)+2∫ T

0|⟨Y (u) ,X r

k (u)⟩|du+

+2 suptm∈Pk

∣∣∣∣∫ tm

0

(Z ◦ J−1)∗BX l

k ◦ JdW∣∣∣∣

+mk−1

∑j=0

⟨B(∫ t j+1

t j

Z (u)dW),∫ t j+1

t j

Z (u)dW⟩

where there are mk +1 points in Pk.The next task is to somehow take the expectation of both sides. However, this is prob-

lematic because the stochastic integral is only a local martingale. Let

τ p = inf{

t :⟨

BX lk (t) ,X

lk (t)

⟩> p}

By right continuity this is a well defined stopping time. Then you obtain the above inequal-ity for

(X l

k

)τ p in place of X lk . Take the expectation and use the Ito isometry to obtain

∫Ω

(sup

tm∈Pk

⟨B(

X lk

)τ p(tm) ,

(X l

k

)τ p(tm)

⟩)dP

≤ E (⟨BX0,X0⟩)+2 ||Y ||K′ ||Xrk ||K

+∥B∥mk−1

∑j=0

∫ t j+1

t j

∫Ω

||Z (u)||2 dPdu

+2∫

(sup

t∈[0,T ]

∣∣∣∣∫ t

0X[0,τ p]

(Z ◦ J−1)∗B

(X l

k

)τ p◦ JdW

∣∣∣∣)

dP+E (|e(k)|)

≤C+∥B∥∫ T

0

∫Ω

∥Z (u)∥2 dPdu+E (|e(k)|)

+2∫

(sup

t∈[0,T ]

∣∣∣∣∫ t

0

(Z ◦ J−1)∗B

(X l

k

)τ p◦ JdW

∣∣∣∣)

dP≤

C+E (|e(k)|)+2∫

(sup

t∈[0,T ]

∣∣∣∣∫ t

0

(Z ◦ J−1)∗B

(X l

k

)τ p◦ JdW

∣∣∣∣)

dP (73.4.12)

2474 CHAPTER 73. THE HARD ITO FORMULA, IMPLICIT CASEBy definition, M (t;41) —M (tj) = Si ‘+! ZdW. Now it follows, on discarding the negativeterms,(BX (tm) .X (tm)) — (BX, Xo) < (+2 [" (Y (u) Xf (u)) ducttj+1tm x mol t++2 [ (ZoJ"')" BXLoJdW+ ¥° ([ ZdW,0 i tsj=0 JzaW )tjTherefore,sup (BX (tm) X (im)) < (BXo,Xo) + 6(8) +2 [ [Or (uw) XE (w)) lactne Pz+2 suptnE PyVE (o( "ze. f200)Jie Zor)’ axlosaw|where there are m, +1 points in Px.The next task is to somehow take the expectation of both sides. However, this is prob-lematic because the stochastic integral is only a local martingale. Lettp =int {r: (BX{(t).XL(1)) > p}By right continuity this is a well defined stopping time. Then you obtain the above inequal-ity for (Xj) °? in place of Xx}. Take the expectation and use the Ito isometry to obtainI (sn (B (x!)" (tm), (xi) Tp 2) aP< E((BXo,X0)) +2 |I¥ [ler XlMeN ptjs 5+8) yf [ \zo\Parawj=0 74 Q+2 supte[0,T]<c+ al [° f \z|Pardu+e(e(e)+2 (sun | (ZoJ~ ‘* “orlC+E (|e (k +2 f supte[0,T][2% io] (Zod ')°B (xi) " oui) dP +E (\e(k)|)Tp[i (Zos~ "B(X;) ‘oun dP (73.4.12)