2472 CHAPTER 73. THE HARD ITO FORMULA, IMPLICIT CASE

Proof: Consider the formula in Lemma 73.4.1.

⟨BX (t) ,X (t)⟩= ⟨BX (s) ,X (s)⟩

+2∫ t

s⟨Y (u) ,X (t)⟩du+ ⟨B(M (t)−M (s)) ,M (t)−M (s)⟩

−⟨B(X (t)−X (s)− (M (t)−M (s))) ,X (t)−X (s)− (M (t)−M (s))⟩+2⟨BX (s) ,M (t)−M (s)⟩ (73.4.9)

Now let t j denote a point of Pk from Lemma 73.1.1. Then for t j > 0,X (t j) is just the valueof X at t j but when t = 0, the definition of X (0) in this step function is X (0)≡ 0. Thus

m−1

∑j=1

⟨BX(t j+1

),X(t j+1

)⟩−⟨BX (t j) ,X (t j)

⟩+⟨BX (t1) ,X (t1)⟩−⟨BX0,X0⟩

= ⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩

Using the formula in Lemma 73.4.1, for t = tm this yields

⟨BX (tm) ,X (tm)⟩−⟨BX0,X0⟩= 2m−1

∑j=1

∫ t j+1

t j

⟨Y (u) ,X rk (u)⟩du+

+2m−1

∑j=1

⟨B∫ t j+1

t j

Z (u)dW,X (t j)

+m−1

∑j=1

⟨B(M(t j+1

)−M (t j)

),M(t j+1

)−M (t j)

−m−1

∑j=1

⟨B(X(t j+1

)−X (t j)−

(M(t j+1

)−M (t j)

)),

X(t j+1

)−X (t j)−

(M(t j+1

)−M (t j)

)⟩+2∫ t1

0⟨Y (u) ,X (t1)⟩du+2

⟨BX0,

∫ t1

0Z (u)dW

⟩+ ⟨BM (t1) ,M (t1)⟩

−⟨B(X (t1)−X0−M (t1)) ,X (t1)−X0−M (t1)⟩ (73.4.10)

First consider

2∫ t1

0⟨Y (u) ,X (t1)⟩du+2

⟨BX0,

∫ t1

0Z (u)dW

⟩+ ⟨BM (t1) ,M (t1)⟩ .

2472 CHAPTER 73. THE HARD ITO FORMULA, IMPLICIT CASEProof: Consider the formula in Lemma 73.4.1.(BX (t) ,X (t)) = (BX (s) ,X (s))+2 [vu )) du+ (B(M(t)—M(s)),M(t)—M(s))— (B(X (t) —X (s) — (M(t) —M(s))),X (t) —X (8) — (M(t) —M(s)))+2 (BX (s) ,M (t) —M(s))Now let ¢; denote a point of Y, from Lemma 73.1.1. Then for t; > 0,X (tj) is just the valueof X at t; but when t = 0, the definition of X (0) in this step function is X (0) = 0. Thus(73.4.9)m—1Y (BX (tint) X (ti41)) — (BX (4) .X (44)j=l+ (BX (t1) ,X (t1)) — (BXo, Xo)= (BX (tm) ,X (tm)) — (BX0, Xo)Using the formula in Lemma 73.4.1, for t = ft, this yields(BX (tm) ,X (tm)) — (BXo0,Xo) =} [vw a (u)) du+2 (a [20 Ww aw.X(y))+S oom M (t}41) —M(t;)) M (ti41) —M (t)))~'F (B(x (thst) —X (4) —(M (441) —M(q))X (tj41) —X (t7) — (M (t)41) —M (t;)))42 [ru X (t1) pat 2( Bxo, [21 Z(u jaw) (BM (t) ,M (t1))— (B(X (t1) —X0 —M (t1)) ,X (1) —Xo —M (t1)) (73.4.10)First consider2 [vw X(t) yau-+2( Xo, [21 Z(u jaw) (BM (t1),M(t)).