71.3. STOCHASTIC DIFFERENTIAL EQUATIONS 2435

Then stopping the equation with this stopping time, we can write

uτnn (t,ω)−u0(ω)+

∫ t

0X[0,τn]N (s,uτn

n (s,ω),uτnn (s−h,ω) ,wτn

n (s,ω) ,ω)ds

=∫ t

0X[0,τn] f (s,ω)ds+

∫ t

0X[0,τn]σ (s,uτn

n ,ω)dW. (71.3.23)

Then using the growth condition 71.3.20 and the Ito formula,

12|uτn

n (t)|2H ≤C (u0,w0, f )+C∫ t

0|uτn

n |2H ds+ sup

s∈[0,t]|M (t)|

where M (t) is a martingale whose quadratic variation is dominated by∫ t

0∥σ (s,uτn

n )∥2 |uτnn |

2 ds

Then it follows by the Burkholder-Davis-Gundy inequality

E

(sup

s∈[0,t]|uτn

n (s)|2H

)≤ E (C (u0,w0, f ))+C

∫ t

0E

(sup

r∈[0,s]|uτn

n (r)|2 dr

)ds

+CE

((∫ t

0∥σ (s,uτn

n )∥2 |uτnn |

2 ds)1/2

)Now apply Gronwall’s inequality and modify the constants so that

E

(sup

s∈[0,t]|uτn

n (s)|2H

)≤ E (C (u0,w0, f ))+CE

((∫ t

0∥σ (s,uτn

n )∥2 |uτnn |

2 ds)1/2

)

≤ E (C (u0,w0, f ))+12

E

(sup

s∈[0,t]|uτn

n (s)|2H

)+CE

(∫ t

0∥σ (s,uτn

n )∥2 ds)

Then, using the linear growth condition on σ , it follows on modification of the constantsagain that

E

(sup

s∈[0,t]|uτn

n (s)|2H

)≤ E (C (u0,w0, f ))+CE

(∫ t

0|uτn

n |2 ds)

≤ E (C (u0,w0, f ))+CE

(∫ t

0sup

r∈[0,s]|uτn

n |2 dr

)

and so, another application of Gronwall’s inequality implies that

E

(sup

s∈[0,T ]|uτn

n (s)|2H

)≤ E (C (u0,w0, f ))< ∞

71.3. STOCHASTIC DIFFERENTIAL EQUATIONS 2435Then stopping the equation with this stopping time, we can writetu," (t,@) —uo(@) +f Zio.z,)N (Ss, uy" (s, @), up" (s—h,@) wy" (s,@),@)dsP ;t t= | Dom) f (8,0) ds+ [ Ko.) (8, ui" eo) dW. (71.3.23)0 0Then using the growth condition 71.3.20 and the Ito formula,1 t5 lui" (ly <C(uo.wo.f)+C fuse lipds-+ sup |M (2)0 s€(0,f]where M (t) is a martingale whose quadratic variation is dominated by' 2) tn |2[ \ior(osuie)IP wie asThen it follows by the Burkholder-Davis-Gundy inequalityE ( sup |ui" cl) <E(C(uo,wo,f)) +€ [ E ( sup |uz" ina) dss€(0,t] ré(0,s]' 1/2vce (( [iio oui? use)0Now apply Gronwall’s inequality and modify the constants so thatt 1/2£ (sp a" cl) (Clemo. +08 (( [iio oui? gs Pa) )s€(0,t]<E(C(wo,Woof)) +58 ( sup |" ol) +08 ( [jo (oui)s€(0,t]Then, using the linear growth condition on o, it follows on modification of the constantsagain thatE{ sup lui" (s)|js€[0,t]IAE(C(uo,wo,f)) +CE ( [ Wid)IAE (C(uo,wo,f)) +CE U/ sup barra)rE (0,s]and so, another application of Gronwall’s inequality implies thatsE[0,7]e( sup ui cl) < E(C(uo,wo.f)) <&