3.3. EXERCISES 61

7. Determine whether the real valued functions defined on R{x2 +1,x3 +2x2 + x,x3 +2x2−1,x3 + x2 + x

}are linearly independent. Is this a basis for the subspace of polynomials of degree nomore than 3? Explain why or why not.

8. Determine whether the real valued functions defined on R{x2 +1,x3 +2x2 + x,x3 +2x2 + x,x3 + x2 + x

}are linearly independent. Is this a basis for the subspace of polynomials of degree nomore than 3? Explain why or why not.

9. Show that the following are each a basis for R3.

(a)

 32−1

 ,

 22−1

 ,

 −1−11



(b)

 −202

 ,

 31−2

 ,

 41−2



(c)

 −301

 ,

 51−1

 ,

 61−1



(d)

 12−1

 ,

 22−1

 ,

 −1−11

10. Show that each of the following is not a basis for R3. Explain why they fail to be a

basis.

(a)

 111

 ,

 011

 ,

 355

(b)

 1−11

 ,

 011

 ,

 3−15

(c)

 325

 ,

 011

 ,

 101



(d)

 101

 ,

 110



(e)

 12−1

 ,

 22−1

 ,

 −1−11

 ,

 100

11. Suppose B is a subset of the set of complex valued functions, none equal to 0 and

defined on Ω and it has the property that if f ,g are different, then f g = 0. Show thatB must be linearly independent.

12. Suppose { f1, f2, · · · , fn} are real valued (continuous) functions defined on [0,1] , andthese satisfy ∫ 1

0fi (x) f j (x)dx = δ i j ≡

{1 if i = j0 if i ̸= j

Show that these functions must be linearly independent.