182 CHAPTER 8. DETERMINANTS
Continuing to use the multilinear properties of determinants, this equals∣∣∣∣∣∣∣∣∣∣∣
1(a1+b1)(b1+an)
1(a1+b2)(b2+an)
· · · 1(a1+bn)(an+bn)
...... · · ·
...1
(an−1+b1)(an+b1)1
(b2+an)(b2+an−1)1
(an+bn)(bn+an−1)1
an+b11
an+b2· · · 1
an+bn
∣∣∣∣∣∣∣∣∣∣∣n−1
∏k=1
(an−ak)
and this equals ∣∣∣∣∣∣∣∣∣∣∣
1(a1+b1)
1(a1+b2)
· · · 1(a1+bn)
...... · · ·
...1
(an−1+b1)1
(b2+an−1)1
(bn+an−1)
1 1 · · · 1
∣∣∣∣∣∣∣∣∣∣∣∏
n−1k=1 (an−ak)
∏nk=1 (an +bk)
Now take −1 times the last column and add to each previous column. Thus it equals∣∣∣∣∣∣∣∣∣∣∣
bn−b1(a1+b1)(a1+bn)
bn−b2(a1+b2)(a1+bn)
· · · 1(a1+bn)
...... · · ·
...bn−b1
(b1+an−1)(bn+an−1)bn−b2
(b2+an−1)(bn+an−1)1
(an−1+bn)
0 0 · · · 1
∣∣∣∣∣∣∣∣∣∣∣∏
n−1k=1 (an−ak)
∏nk=1 (an +bk)
Now continue simplifying using the multilinear property of the determinant.∣∣∣∣∣∣∣∣∣∣∣
1(a1+b1)
1(a1+b2)
· · · 1...
... · · ·...
1(b1+an−1)
1(b2+an−1)
1
0 0 · · · 1
∣∣∣∣∣∣∣∣∣∣∣∏
n−1k=1 (an−ak)
∏nk=1 (an +bk)
∏n−1k=1 (bn−bk)
∏n−1k=1 (ak +bn)
Now, expanding along the bottom row, what has just resulted is∣∣∣∣∣∣∣∣1
a1+b1· · · 1
a1+bn−1... · · ·
...1
an−1+b1· · · 1
an−1+bn−1
∣∣∣∣∣∣∣∣∏
n−1k=1 (an−ak)
∏nk=1 (an +bk)
∏n−1k=1 (bn−bk)
∏n−1k=1 (ak +bn)
By induction this equals
∏n−1k=1 (an−ak)
∏nk=1 (an +bk)
∏n−1k=1 (bn−bk)
∏n−1k=1 (ak +bn)
∏ j<i≤n−1 (ai−a j)(bi−b j)
∏i, j≤n−1 (ai +b j)
=∏ j<i≤n (ai−a j)(bi−b j)
∏i, j≤n (ai +b j)■