4.6. EXERCISES 97
(b) (AB)2 = A2B2
(c) (A+B)2 = A2 +2AB+B2
(d) (A+B)2 = A2 +AB+BA+B2
(e) A2B2 = A(AB)B
(f) (A+B)3 = A3 +3A2B+3AB2 +B3
(g) (A+B)(A−B) = A2−B2
(h) None of the above. They are all wrong.
(i) All of the above. They are all right.
23. Let A =
(−1 −13 3
). Find all 2×2 matrices, B such that AB = 0.
24. Prove that if A−1 exists and Ax= 0 then x= 0.
25. Let
A =
1 2 32 1 41 0 2
.
Find A−1 if possible. If A−1 does not exist, determine why.
26. Let
A =
1 0 32 3 41 0 2
.
Find A−1 if possible. If A−1 does not exist, determine why.
27. Let
A =
1 2 32 1 44 5 10
.
Find A−1 if possible. If A−1 does not exist, determine why.
28. Let
A =
1 2 0 21 1 2 02 1 −3 21 2 1 2
Find A−1 if possible. If A−1 does not exist, determine why.
29. Let
A =
(2 11 3
)Find A−1 if possible. If A−1 does not exist, determine why. Do this in Q2 and in Z2
5.