868 APPENDIX A. THE THEORY OF THE RIEMANNN INTEGRAL∗

which implies the inequality,∫XU (x) f (h(x)) |detDh(x)|dVn ≤

∫Xh(U) (z) f (z)dVn

But now you can use the same information just derived to obtain equality.

x= h−1 (z)

and so from what was just done,∫XU (x) f (h(x)) |detDh(x)|dVn

=∫

Xh−1(h(U)) (x) f (h(x)) |detDh(x)|dVn

≥∫

Xh(U) (z) f (z)∣∣detDh

(h−1 (z)

)∣∣ ∣∣detDh−1 (z)∣∣dVn

=∫

Xh(U) (z) f (z)dVn

from the chain rule. In fact,

I = Dh(h−1 (z)

)Dh−1 (z) ,

so

1 =∣∣detDh

(h−1 (z)

)∣∣ ∣∣detDh−1 (z)∣∣ . ■

The change of variables theorem follows.

Theorem A.6.15 Let U be a bounded open set with ∂U having content 0. Also let h ∈C1(U ;Rn

)be one to one on U and Dh(x)−1 exists for all x ∈U. Let f ∈C

(U). Then∫

Xh(U) (z) f (z)dz =∫

XU (x) f (h(x)) |detDh(x)|dx

Proof: You note that the formula holds for f+ ≡ | f |+ f2 and f− ≡ | f |− f

2 . Now f =f+− f− and so ∫

Xh(U) (z) f (z)dz

=∫

Xh(U) (z) f+ (z)dz−∫

Xh(U) (z) f− (z)dz

=∫

XU (x) f+ (h(x)) |detDh(x)|dx−∫

XU (x) f− (h(x)) |detDh(x)|dx

=∫

XU (x) f (h(x)) |detDh(x)|dx. ■

868 APPENDIX A. THE THEORY OF THE RIEMANNN INTEGRAL*which implies the inequality,| %@)f(h(@))|derDh(w) AV, < | %nw) (FAVBut now you can use the same information just derived to obtain equality.x =h!(z)and so from what was just done,[ 2 (@)s(h(@)) derDh (x) av,_ / Ly-\uniuy (®)S (h(@)) |detDhr (w)| dV(z) |detDh (ho! (z))| |detDh! (z)|dVnVa=SslI—,&(u) (2) f (2) dVnfrom the chain rule. In fact,1=Dh(h '(z)) Dh"! (z),so1 = |detDh (h7! (z))||detDh“! (z)|. 2The change of variables theorem follows.Theorem A.6.15 Let U be a bounded open set with OU having content 0. Also let h €C! (U;R") be one to one on U and Dh (x)~! exists for all a €U. Let f €C (U). Then| Fwy Faz = | % (wf (h(w)) ldercDh (@)| dxProof: You note that the formula holds for ft = Wty and f~— = Wes Now f =f* —f7 and so[ %nwy OF az= | Frwy z)ft(z Jaz | Baw) z)f- (z) dz/ %y (a) f* (h(w)) |detDh (w)|dx — / Xu (w) f> (h(w)) |detDh (w) |dx[mews (w)) det Dh (w) | dx. .