860 APPENDIX A. THE THEORY OF THE RIEMANNN INTEGRAL∗
because∫Rm φ (·,y) dVy has the constant value given in (1.24) for x ∈ R′1. Similarly,
mR′1
(∫Rm
φ (·,y) dVy
)≡ inf
{∑
R∈Gn
(∑
P∈Gm
φ R×Pv(P)
)XR′ (x) : x ∈ R′1
}
= ∑P∈Gm
φ R1×Pv(P) . (1.25)
Theorem A.5.4 (Fubini) Let f ∈ R (Rn+m) and suppose also that f (x, ·) ∈ R (Rm) foreach x. Then ∫
Rmf (·,y) dVy ∈R (Rn) (1.26)
and ∫Rn+m
f (z) dV =∫Rn
∫Rm
f (x,y) dVy dVx. (1.27)
Proof: Let G be a grid such that UG ( f )−LG ( f )< ε and let Gn and Gm be as definedabove. Let
φ (z)≡ ∑Q∈G
MQ′ ( f )XQ′ (z) , ψ (z)≡ ∑Q∈G
mQ′ ( f )XQ′ (z) .
Observe that MQ′ ( f )≤MQ ( f ) and mQ′ ( f )≥ mQ ( f ). Then
UG ( f )≥∫
φ dV, LG ( f )≤∫
ψ dV.
Also f (z) ∈ (ψ (z) ,φ (z)) for all z. Thus from (1.24),
MR′
(∫Rm
f (·,y) dVy
)≤MR′
(∫Rm
φ (·,y) dVy
)= ∑
P∈Gm
MR′×P′ ( f )v(P)
and from (1.25),
mR′
(∫Rm
f (·,y) dVy
)≥ mR′
(∫Rm
ψ (·,y) dVy
)= ∑
P∈Gm
mR′×P′ ( f )v(P) .
Therefore,
∑R∈Gn
[MR′
(∫Rm
f (·,y) dVy
)−mR′
(∫Rm
f (·,y) dVy
)]v(R)≤
∑R∈Gn
∑P∈Gm
[MR′×P′ ( f )−mR′×P′ ( f )]v(P)v(R)≤UG ( f )−LG ( f )< ε.
This shows, from Lemma A.4.12 and the Riemannn criterion, that∫Rm f (·,y) dVy ∈R (Rn).
It remains to verify (1.27). First note∫Rn+m
f (z) dV ∈ [LG ( f ) ,UG ( f ) ] .
Next,
LG ( f )≤∫Rn+m
ψ dV =∫Rn
∫Rm
ψ dVy dVx ≤∫Rn
∫Rm
f (x,y) dVy dVx