860 APPENDIX A. THE THEORY OF THE RIEMANNN INTEGRAL∗

because∫Rm φ (·,y) dVy has the constant value given in (1.24) for x ∈ R′1. Similarly,

mR′1

(∫Rm

φ (·,y) dVy

)≡ inf

{∑

R∈Gn

(∑

P∈Gm

φ R×Pv(P)

)XR′ (x) : x ∈ R′1

}

= ∑P∈Gm

φ R1×Pv(P) . (1.25)

Theorem A.5.4 (Fubini) Let f ∈ R (Rn+m) and suppose also that f (x, ·) ∈ R (Rm) foreach x. Then ∫

Rmf (·,y) dVy ∈R (Rn) (1.26)

and ∫Rn+m

f (z) dV =∫Rn

∫Rm

f (x,y) dVy dVx. (1.27)

Proof: Let G be a grid such that UG ( f )−LG ( f )< ε and let Gn and Gm be as definedabove. Let

φ (z)≡ ∑Q∈G

MQ′ ( f )XQ′ (z) , ψ (z)≡ ∑Q∈G

mQ′ ( f )XQ′ (z) .

Observe that MQ′ ( f )≤MQ ( f ) and mQ′ ( f )≥ mQ ( f ). Then

UG ( f )≥∫

φ dV, LG ( f )≤∫

ψ dV.

Also f (z) ∈ (ψ (z) ,φ (z)) for all z. Thus from (1.24),

MR′

(∫Rm

f (·,y) dVy

)≤MR′

(∫Rm

φ (·,y) dVy

)= ∑

P∈Gm

MR′×P′ ( f )v(P)

and from (1.25),

mR′

(∫Rm

f (·,y) dVy

)≥ mR′

(∫Rm

ψ (·,y) dVy

)= ∑

P∈Gm

mR′×P′ ( f )v(P) .

Therefore,

∑R∈Gn

[MR′

(∫Rm

f (·,y) dVy

)−mR′

(∫Rm

f (·,y) dVy

)]v(R)≤

∑R∈Gn

∑P∈Gm

[MR′×P′ ( f )−mR′×P′ ( f )]v(P)v(R)≤UG ( f )−LG ( f )< ε.

This shows, from Lemma A.4.12 and the Riemannn criterion, that∫Rm f (·,y) dVy ∈R (Rn).

It remains to verify (1.27). First note∫Rn+m

f (z) dV ∈ [LG ( f ) ,UG ( f ) ] .

Next,

LG ( f )≤∫Rn+m

ψ dV =∫Rn

∫Rm

ψ dVy dVx ≤∫Rn

∫Rm

f (x,y) dVy dVx

860 APPENDIX A. THE THEORY OF THE RIEMANNN INTEGRAL*because Jpn (-,y) dV, has the constant value given in (1.24) for € R}. Similarly,Mp’ ([,,0¢.n a) =n y (5 XY Prxpv (P )) ae ): ren|REG,= DV op, xpv(P)- (1.25)PEGTheorem A.5.4 (Fubini) Let f © &(R"*”) and suppose also that f (x,-) € Z(R") foreach x. Thenrem dO ¥) Vy € A(R") (1.26)fof av=[ [ fley) dV, dV. (1.27)Proof: Let Y be a grid such that Y (f) — Zy (f) < € and let GY, and G,, be as definedabove. Letand=) Mo (f ) Xo (z =) mg (f ) Zo (z Zz).OcEG OEYObserve that Mg (f) < Mo (f) and mg (f) > mo (f). ThenA> [oav. Zo(f)< | wav.Also f(z) € (w(z),@(z)) for all z. Thus from (1.24),Mp (ff av, ) < Mr (/,.e6n av, = 2 Mexe (f)v(P)and from (1.25),mp! f(-,y) dVy } > mp Ww(-.y)dVy) = Yo mpxp (f)v(P).(/..r0nay) 2me(f. vee)PoGn& Me (ff av,) — mp (fru) av,)| v(R) <YY (Mex (f) —merxp (fv (P) v(R) < Uy (f) — Lo (f) <€.REG, PEGYnThis shows, from Lemma A.4.12 and the Riemannn criterion, that fam f (-,y) dVy € Z (R").It remains to verify (1.27). First noteTherefore,ont ® dv € [Zo (f), Us (f) |.Next,Ly (f< /viv=[ [ wayan< |) [flay aay,Ratm n JRm Rr JR"