756 CHAPTER 37. SOME FUNDAMENTAL FUNCTIONS AND TRANSFORMS

Proof: As in the proof of Theorem 37.3.2, changing variables shows that 2π

∫∞

0sin(ru)

u du=1.Therefore,

∫∞

0

sin(ur)u

(g(x−u)+g(x+u)

2

)du− g(x+)+g(x−)

2

=2π

∫∞

0

sin(ur)u

(g(x−u)−g(x−)+g(x+u)−g(x+)

2

)du

=2π

∫δ

0sin(ur)

(g(x−u)−g(x−)

2u+

g(x+u)−g(x+)

2u

)du

+2π

∫∞

δ

sin(ur)u

(g(x−u)−g(x−)

2+

g(x+u)−g(x+)

2

)du (37.4)

Second Integral: It equals

∫∞

δ

sin(ur)u

(g(x−u)+g(x+u)

2− g(x−)+g(x+)

2

)du

=2π

∫∞

δ

sin(ur)u

(g(x−u)+g(x+u)

2

)− 2

π

∫∞

δ

sin(ur)u

(g(x−)+g(x+)

2

)(37.5)

From part 2 of Theorem 37.3.2,

limr→∞

∫∞

δ

sin(ur)u

g(x−)+g(x+)

2du = 0

Thus consider the first integral in 37.4.

∫∞

δ

sin(ur)u

(g(x−u)+g(x+u)

2

)du

=1π

∫∞

δ

sin(ur)u

g(x−u)du+1π

∫∞

δ

sin(ur)u

g(x+u)du

=1π

(∫ −δ

−∞

sin(ur)u

g(x+u)du+∫

δ

sin(ur)u

g(x+u)du)

Now ∫ −δ

−∞

sin(ur)u

g(x+u)du =∫ −δ

−∞

sin(ur)g(x+u)

udu

and∣∣∣ g(x+u)

u

∣∣∣≤ 1δ|g(x+u)| for u <−δ . Thus u→ g(x+u)

u is in L1 ((−∞,−δ )) . Indeed,

∫ −δ

−∞

∣∣∣∣g(x+u)u

∣∣∣∣du≤ 1δ

∫R|g(x+u)|du =

∫R|g(y)|dy < ∞

It follows from the Riemann Lebesgue lemma

limr→∞

∫ −δ

−∞

sin(ur)g(x+u)

udu = lim

r→∞

∫∞

δ

sin(ur)g(x+u)

udu = 0

756 CHAPTER 37. SOME FUNDAMENTAL FUNCTIONS AND TRANSFORMSProof: As in the proof of Theorem 37.3.2, changing variables shows that 2 = fo snr) dy =1.Therefore,2 [ sin (ur) (Soe) gy SH a)Jo u 2 2=2 sine) (eter) ~eler rere) 264)_ 2f sin (ur e x— ae), ge) ay2u 2u2p sin (ur we (8 ean) AOE) ay (37.4)2Second Integral: It equalsae sin (ur) (Seow seer eau4 u 2 2_ a Ce-2 [7 salu) (ste=}+ee4)) ars)From part 2 of Theorem 37.3.2,tim 2. [7 Sin (ur) 80) +90)du=0roe TT /§ u 2 “Thus consider the first integral in 37.4.2 pa (! wowtalet) a_ -[ sin (ur) ox aes aC1. u£ (fm ge tanan f° SE etc ap)[ sin (ur) (atu) du= i- sin (ur) ss duco u —coNowand |S) < E]g(x-+u)| fora <—8. Thus u > #4 js in L! ((—ce, —5)). Indeed,[.It follows from the Riemann Lebesgue lemmag(x+u)1 lfdu< = [ \g(x+wldu=< | Ig (y)|dy < ©S Jr 6 JRlim sin (ur lim / sin (ur)T72 J _ 0 u r700 J §5 ( BOF) 4, — a a 8059) 14 <9