746 CHAPTER 36. ISOLATED SINGULARITIES AND ANALYTIC FUNCTIONS

Contour integral:

∫ 1

0

∣∣reiε + t(Reiε

)∣∣p−1 e(p−1)iε

1+ reiε + t (Reiε) f sReiε dt

The one on the bottom: rei(2π−ε)+ t(

Rei(2π−ε))= z, t ∈ [0,1]

Contour integral:

−∫ 1

0

∣∣∣rei(2π−ε)+ t(

Rei(2π−ε))∣∣∣p−1

e(p−1)i(2π−ε)

1+ rei(2π−ε)+ t(Rei(2π−ε)

) Rei(2π−ε)dt

The integral over the small circle: z = reit , t ∈ [ε,2π− ε]Contour integral:

−∫ 2π−ε

ε

rp−1e(p−1)it

1+ reit rieitdt

The integral over the large circle: z = Reit , t ∈ [ε,2π− ε]Contour integral: ∫ 2π−ε

ε

Rp−1e(p−1)it

1+Reit Rieitdt

2πieiπ(p−1) =∫

γR,r,ε

zp−1

1+ zdz

The residue at −1 of the function is eiπ(p−1) and so the contour integral on the right equalsthe sum of those other integrals above. Now let ε → 0. This yields

2πieiπ(p−1) =∫

γR,r

zp−1

1+ zdz

where the integral on the right equals the sum

∫ 1

0

(r+ tR)p−1

1+ r+ tRRdt +

(−∫ 1

0

(r+ tR)p−1 e(p−1)i(2π)

1+ r+ tRRdt

)

+

E1(r)∫ 2π

0

rp−1e(p−1)it

1+ reit rieitdt +

E2(R)∫ 2π

0

Rp−1e(p−1)it

1+Reit Rieitdt

The last two integrals converge to 0 as r→ 0 and R→ ∞. This follows easily from theform of the integrands. You can change the variable in the first two to write them as∫ R

r

xp−1

1+ xdx, −e(p−1)i(2π)

∫ R

r

xp−1

1+ xdx

Thus

2πieiπ(p−1) =∫ R

r

xp−1

1+ xdx(

1− e(p−1)i(2π))+E1 (r)+E2 (R)

746 CHAPTER 36. ISOLATED SINGULARITIES AND ANALYTIC FUNCTIONSContour integral:1 |relé +4 (Rei€ Pl (p-lie| Ire + (Re )| & Re'«dt0 1+rei® +t (Re'®) fsThe one on the bottom: re(?*—®) ++ (Rei2z*)) =z1t€(0,1]Contour integral:; rel) 41 (pollen-e)) |? ip-van-e~ Jo 1 + rei(27-€) +t (Rei2z-£))Rei24-®) dtThe integral over the small circle: z = re" ,t € [€,2a — €]Contour integral:2n—e ~P—| e(p—l)it-| Oriel at€ 1+reThe integral over the large circle: z= Re" ,t € [e,2a —€]Contour integral:2n-€ RP-! e(p—Vit ;———— Rie" dt[ 1+Ret1Qmie'™(P-!) — | odYryre I+zThe residue at —1 of the function is e’*(?—)) and so the contour integral on the right equalsthe sum of those other integrals above. Now let € — 0. This yields1dmieit(P-!) — | PdYR,r 1 +zwhere the integral on the right equals the sum1 p-l 1 P-1 ,(p-1)i(2z)[ree -| (r+iR)""¢ Rato l+r+tR 0 1+r+tRE\(r)Qn ~p-l elP- it 2m RP- 7" itdt Ree Ri dt+/ Tre —————rie + Tp Ret leThe last two integrals converge to 0 as r — 0 and R > ©». This follows easily from theform of the integrands. You can change the variable in the first two to write them asR yp-l R yp-lw dx, —elP Diem) fo *d, Tex , 14xThus. R yp-|Qniel™P-!) — ; te (= elPi(2 *) +E; (r) + Ep (R)