35.6. FUNCTIONS DIFFERENTIABLE ON A DISK, ZEROS 713

Consider 35.11 which involves identifying the an in terms of the derivatives of f . This isobvious if k = 0. Suppose it is true for k. Then for small h ∈ C,

1h

(f (k) (z+h)− f (k) (z)

)=

1h

∑n=k

n(n−1) · · ·(n− k+1)an

((z+h− z0)

n−k− (z− z0)n−k)

=1h

∑n=k+1

n(n−1) · · ·(n− k+1)an

 ∑n−kj=0

(n− k

j

)h j (z− z0)

(n−k)− j

−(z− z0)n−k

=

∑n=k+1

n(n−1) · · ·(n− k+1)an

(n−k

∑j=1

(n− k

j

)h j−1 (z− z0)

(n−k)− j

)

=∞

∑n=k+1

n(n−1) · · ·(n− k+1)(n− k)an (z− z0)(n−k)−1

+h∞

∑n=k+1

n(n−1) · · ·(n− k+1)an

(n−k

∑j=2

(n− k

j

)h j−2 (z− z0)

(n−k)− j

)(35.12)

By what was shown earlier,

lim supn→∞

(n(n−1) · · ·(n− k+1) |an| |z− z0|n−k

)1/n

= lim supn→∞

|an|1/n |z− z0|< 1 (35.13)

Consider the part of 35.12 which multiplies h. Does the infinite series converge? Yes itdoes. In fact it converges absolutely.

∑n=k+1

∣∣∣∣∣n(n−1) · · ·(n− k+1)an

(n−k

∑j=2

(n− k

j

)h j−2 (z− z0)

(n−k)− j

)∣∣∣∣∣≤

∑n=k+1

n(n−1) · · ·(n− k+1) |an| |z− z0|(n−2)−kn−k

∑j=2

(n− k

j

)|h| j−2

|z− z0| j−2

≤∞

∑n=k+1

n(n−1) · · ·(n− k+1) |an| |z− z0|(n−2)−k(

1+|h||z− z0|

)n−k

For all h small enough, this series converges, the infinite sum being decreasing in |h|.Indeed,

lim supn→∞

(n(n−1) · · ·(n− k+1) |an| |z− z0|(n−2)−k

(1+

|h||z− z0|

)n−k)1/n

= lim supn→∞

|an|1/n |z− z0|(

1+|h||z− z0|

)< 1

if |h| is small enough. Thus we can take a limit as h→ 0 in 35.12 and conclude that

f (k+1) (z) =∞

∑n=k+1

n(n−1) · · ·(n− k+1)(n− k)an (z− z0)n−(k+1) ■

35.6. FUNCTIONS DIFFERENTIABLE ON A DISK, ZEROS 713Consider 35.11 which involves identifying the a, in terms of the derivatives of f. This isobvious if k = 0. Suppose it is true for k. Then for small h € C, (r) (+h) —F (2)ian (n—1)-+-(n—k+1)ay ((z-+h—2o)"*—(z-20)"*)_ k nk)Yo n(n=1)(n—k+ Nay B8("; Je zo)" 9=k+—(z—z)"= y n(n—1)---(n—k+l)a (E("; Yar H(enayir*)n=k+1= YF n(nat)e (nk +1) (2 bay (2)n=k+1n—k _ :+h yon (n—1)++-(n—k+1) ay (E(" * ay) (35.12)n=k-+1 j=2 JBy what was shown earlier,_1\1/nlim sup (n (n= 1) (n=k+ 1) fan) 220" ‘)noo=lim sup |a,|!/"|z—zo| <1 (35.13)n—- eoConsider the part of 35.12 which multiplies /. Does the infinite series converge? Yes itdoes. In fact it converges absolutely.n—k n—k . ;nin Hosta ke tan (E ( )errteoainen)coLn=k+1 j=2 Jco n—k J 2a —k h<y n(n—1)++:(n—k+1) an||z—zo| > ‘y ; inak | jo\ J lz —zol| | n—k< yon (n—1)-+-(n—- k+1) lan||z—zo|7 (14 )ea |z—zo|For all # small enough, this series converges, the infinite sum being decreasing in |h|.Indeed,—k\ I1) h n—klim sup (min t)fnk Dale 2) ‘(4d |— 20noo. h=lim sup |a,|!/" |z—zo| (14 — ) <1n—yoo Zo|if |h| is small enough. Thus we can take a limit as A > 0 in 35.12 and conclude thatfH (2) _ y n(n—1)---(n—k+1)(n—k) an (z—z0)n=k+1n—(k+1) rv]