17.1. THE RESOLVENT AND SPECTRAL RADIUS 421
Therefore, ∑∞k=0 Bk (I−B) = limn→∞ ∑
nk=0 Bk (I−B) = limn→∞
(I−Bn+1
)= I. As to the
estimate, if ∥x∥ ≤ 1,
∥∥∥(I−B)−1 x∥∥∥ =
∥∥∥∥∥(
∞
∑k=0
Bk
)(x)
∥∥∥∥∥=∥∥∥∥∥ ∞
∑k=0
Bk (x)
∥∥∥∥∥≤
∞
∑k=0
∥∥∥Bk∥∥∥≤ ∞
∑k=0∥B∥k =
11−∥B∥
■
The major result about resolvents is the following proposition. Note that the resolventhas values in L (X ,X) which is a Banach space.
Proposition 17.1.5 Let A ∈L (X ,X) for X a Banach space. Then the following hold.
1. ρ (A) is open
2. λ → (λ I−A)−1 is continuous
3. λ → (λ I−A)−1 is analytic
4. For |λ |> ∥A∥ ,∥∥∥(λ I−A)−1
∥∥∥≤ 1|λ |−∥A∥ and (λ I−A)−1 = ∑
∞k=0
Ak
λk+1
Proof: 1.) Let λ ∈ ρ (A) . Let |µ−λ |<∥∥∥(λ I−A)−1
∥∥∥−1. Then
µI−A = (µ−λ ) I +λ I−A = (λ I−A)[I− (λ −µ)(λ I−A)−1
](17.2)
Now∥∥∥(λ −µ)(λ I−A)−1
∥∥∥= |λ −µ|∥∥∥(λ I−A)−1
∥∥∥< 1 from the assumed estimate. Thus,
[I− (λ −µ)(λ I−A)−1
]−1=
∞
∑k=0
(λ −µ)k((λ I−A)−1
)k
and so from 17.2,
(µI−A)−1 =[I− (λ −µ)(λ I−A)−1
]−1(λ I−A)−1 (17.3)
=∞
∑k=0
(λ −µ)k((λ I−A)−1
)k+1
This shows ρ (A) is open.2.) Next consider continuity. This follows from Proposition 17.1.3.3.) From Theorem 14.8.1, it suffices to show that the function is differentiable. This
follows from the continuity and the resolvent equation.
(λ I−A)−1− (µI−A)−1
λ −µ=
(µ−λ )(µI−A)−1 (λ I−A)−1
λ −µ
= −(µI−A)−1 (λ I−A)−1
so taking the limit as λ → µ one obtains the derivative at µ is −((µI−A)−1
)2.