624 CHAPTER 31. CURVILINEAR COORDINATES

Theorem 31.6.2 The Christoffel symbols of the second kind satisfy the following

∂ei (x)

∂x j =

{ki j

}ek (x) , (31.28)

∂ei (x)

∂x j =−{

ik j

}ek (x) , (31.29){

ki j

}=

{kji

}, (31.30){

mik

}=

g jm

2

[∂gi j

∂xk +∂gk j

∂xi − ∂gik

∂x j

]. (31.31)

Proof: Formula 31.28 is the definition of the Christoffel symbols. We verify 31.29 next.To do so, note

ei (x) ·ek (x) = δik.

Then from the product rule,

∂ei (x)

∂x j ·ek (x)+ei (x) · ∂ek (x)

∂x j = 0.

Now from the definition,

∂ei (x)

∂x j ·ek (x) =−ei (x) ·{

rk j

}er (x) =−

{r

k j

ir =−

{i

k j

}.

But also, using the above,

∂ei (x)

∂x j =∂ei (x)

∂x j ·ek (x)ek (x) =−

{i

k j

}ek (x) .

This verifies 31.29. Formula 31.30 follows from 31.26 and equality of mixed partial deriva-tives.

It remains to show 31.31.

∂gi j

∂xk =∂ei

∂xk ·e j +ei ·∂e j

∂xk =

{rik

}er ·e j +ei ·er

{rjk

}.

Therefore,∂gi j

∂xk =

{rik

}gr j +

{rjk

}gri. (31.32)

Switching i and k while remembering 31.30 yields

∂gk j

∂xi =

{rik

}gr j +

{rji

}grk. (31.33)

Now switching j and k in 31.32,

∂gik

∂x j =

{ri j

}grk +

{rjk

}gri. (31.34)

624 CHAPTER 31. CURVILINEAR COORDINATESTheorem 31.6.2 The Christoffel symbols of the second kind satisfy the followingdei) ={ ‘ eva), (31.28)20) = -{ G eka), (31.29){ k \{ ‘ \ (31.30)(7}-SEe ee)Proof: Formula 31.28 is the definition of the Christoffel symbols. We verify 31.29 next.To do so, notee! (x) -e, (a) = 5}.Then from the product rule,de! (x)Oxsdex (a)Oxi-ex (a) +e! (a)Now from the definition,de! (x)LF sex (e)=-e(@)-{ fo bert =—{ f barf ft.But also, using the above,ge =e a@ter=—{ 4 JeeThis verifies 31.29. Formula 31.30 follows from 31.26 and equality of mixed partial deriva-tives.It remains to show 31.31.Ogij _ OE 4 ej r -e; +e: rOxk = Oxk ej ej Oxk = ik er ej ej e+ ik .Therefore,Ogi; r r= je 31.32Oxk fieheot {i be ( )Switching i and k while remembering 31.30 yieldsO8Kj r rra ={ ik eat ji Mea (31.33)Now switching j and k in 31.32,OgiK _ r r