194 CHAPTER 8. METHODS FOR FINDING ANTIDERIVATIVES
(a)∫
sec(3x) dx(b)
∫sec2 (3x) tan(3x) dx
(c)∫ 1
3+5x2 dx
(d)∫ 1√
5−4x2dx
(e)∫ 3
x√
4x2−5dx
7. Find the indicated antiderivatives.
(a)∫
xcosh(x2 +1
)dx
(b)∫
x35x4dx
(c)∫
sin(x)7cos(x) dx
(d)∫
xsin(x2)
dx
(e)∫
x5√
2x2 +1dx Hint: Let u =2x2 +1.
8. Find∫
sin2 (x) dx. Hint: Derive and use sin2 (x) = 1−cos(2x)2 .
9. Find the indicated antiderivatives.
(a)∫ lnx
x dx
(b)∫ x3
3+x4 dx
(c)∫ 1
x2+2x+2 dx Hint: Complete thesquare in the denominator and thenlet u = x+1. Remember the arctanfunction.
(d)∫ 1√
4−x2dx
(e)∫ 1
x√
x2−9dx Hint: Let x = 3u.
(f)∫ ln(x2)
x dx
(g) Find∫ x3√
6x2+5dx
(h) Find∫
x 3√
6x+4dx
10. Find the indicated antiderivatives.
(a)∫
x√
2x+4dx(b)
∫x√
3x+2dx(c)
∫ 1√36−25x2
dx
(d)∫ 1√
9−4x2dx
(e)∫ 1√
1+4x2dx
(f)∫ x√
(3x−1)dx
(g)∫ x√
5x+1dx
(h)∫ 1
x√
9x2−4dx
(i)∫ 1√
9+4x2dx
11. Find∫ 1
x1/3+x1/2 dx. Hint: Try letting x = u6 and use long division.
12. Suppose f is a function defined on R and it satisfies the functional equation given byf (a+b) = f (a)+ f (b) . Suppose also f ′ (0) = k. Find f (x) .
13. Suppose f is a function defined on R having values in (0,∞) and it satisfies thefunctional equation f (a+b) = f (a) f (b) . Suppose also f ′ (0) = k. Find f (x) .
14. Suppose f is a function defined on (0,∞) having values in R and it satisfies thefunctional equation f (ab) = f (a)+ f (b) . Suppose also f ′ (1) = k. Find f (x) .
15. Suppose f is a function defined on R and it satisfies the functional equation
f (a+b) = f (a)+ f (b)+3ab.
Suppose also that limh→0f (h)
h = 7. Find f (x) if possible.