184 CHAPTER 7. THE INTEGRAL
Lemma 7.3.18 Let α ≥ 0. Then∫ b
a α f (x)dx = α∫ b
a f (x)dx.
Proof: It is routine to verify that U (α f ,P) = αU ( f ,P) ,L(α f ,P) = αL( f ,P). LetU ( f ,P)−L( f ,P)< ε . Therefore,∫ b
aα f (x)dx ∈ [L(α f ,P) ,U (α f ,P)] = [αL( f ,P) ,αU ( f ,P)]
α
∫ b
af (x)dx ∈ [αL( f ,P) ,αU ( f ,P)]
Thus both∫ b
a α f (x)dx and α∫ b
a f (x)dx are in an interval of length αε so since ε is arbi-trary, this proves the lemma.
Proposition 7.3.19 Let f ,g be integrable. Then if α,β are real numbers,then the fol-lowing holds for the integrals:
∫ ba (α f +βg)(x)dx = α
∫ ba f (x)dx+β
∫ ba g(x)dx.
Proof: I want to show that∫ b
a α f (x)dx = α∫ b
a f (x)dx regardless of whether α isnonnegative. By the first lemma,∫ b
a(|α|−α) f (x)dx+
∫ b
aα f (x)dx =
∫ b
a|α| f (x)dx
and now, by the second lemma and subtracting |α|∫ b
a f (x)dx,
(|α|−α)∫ b
af (x)dx+
∫ b
aα f (x)dx =
∫ b
a|α| f (x)dx
−α
∫ b
af (x)dx+
∫ b
aα f (x) = 0
so this shows one can factor out any real number.Now from what was just shown and the lemmas,∫ b
a(α f +βg)(x)dx =
∫ b
aα f (x)dx+
∫ b
aβ f (x)dx
= α
∫ b
af (x)dx+β
∫ b
af (x)dx
Proposition 7.3.20 If a < b, Then∫ b
a | f (x)|dx ≥∣∣∣∫ b
a f (x)dx∣∣∣ . Here f is assumed in-
tegrable.
Proof: From the definition, if a < b, then∫ b
a f (x)dx ≥ 0 if f (x) ≥ 0 for all x. Nowfrom Proposition 7.3.16, if f is integrable, so is | f | . Then∫ b
a(| f (x)|− f (x))dx ≥ 0 so
∫ b
a| f (x)|dx ≥
∫ b
af (x)dx∫ b
a(| f (x)|+ f (x))dx ≥ 0 so
∫ b
a| f (x)|dx ≥−
∫ b
af (x)dx
which implies that for a < b,∫ b
a | f (x)|dx ≥∣∣∣∫ b
a f (x)dx∣∣∣ .
Definition 7.3.21 Suppose f is a function and P is a partition P = x0 = a < x1 <· · · < xn = b. A Riemann sum is of the form ∑
nk=1 f (zk)(xk − xk−1) where zk ∈ [xk−1,xk].
Thus every such Riemann sum is between U ( f ,P) and L( f ,P) and so, if f is integrable,every such Riemann sum can be considered an approximation to
∫ ba f (x)dx.