6.6. DOUBLE SERIES 165
Proof: Note that for all a,b, f (a,b) ≤ supb∈B supa∈A f (a,b) and therefore, for all a,supb∈B f (a,b)≤ supb∈B supa∈A f (a,b). Therefore,
supa∈A
supb∈B
f (a,b)≤ supb∈B
supa∈A
f (a,b) .
Repeat the same argument interchanging a and b, to get the conclusion of the lemma.
Theorem 6.6.4 Let ai j ≥ 0. Then ∑∞i=1 ∑
∞j=1 ai j = ∑
∞j=1 ∑
∞i=1 ai j.
Proof: First note there is no trouble in defining these sums because the ai j are allnonnegative. If a sum diverges, it only diverges to ∞ and so ∞ is the value of the sum. Nextnote that ∑
∞j=r ∑
∞i=r ai j ≥ supn ∑
∞j=r ∑
ni=r ai j because for all j,∑∞
i=r ai j ≥ ∑ni=r ai j.Therefore,
using Lemma 6.1.3,
∞
∑j=r
∞
∑i=r
ai j ≥ supn
∞
∑j=r
n
∑i=r
ai j = supn
limm→∞
m
∑j=r
n
∑i=r
ai j = supn
limm→∞
n
∑i=r
m
∑j=r
ai j
= supn
n
∑i=r
limm→∞
m
∑j=r
ai j = supn
n
∑i=r
∞
∑j=r
ai j = limn→∞
n
∑i=r
∞
∑j=r
ai j =∞
∑i=r
∞
∑j=r
ai j
Interchanging the i and j in the above argument proves the theorem.The following is the fundamental result on double sums.
Theorem 6.6.5 Let ai j ∈ R and suppose ∑∞i=r ∑
∞j=r∣∣ai j∣∣< ∞ . Then ∑
∞i=r ∑
∞j=r ai j =
∑∞j=r ∑
∞i=r ai j and every infinite sum encountered in the above equation converges.
Proof: By Theorem 6.6.4, ∑∞j=r ∑
∞i=r∣∣ai j∣∣ = ∑
∞i=r ∑
∞j=r∣∣ai j∣∣ < ∞. Therefore, for each
j, ∑∞i=r∣∣ai j∣∣ < ∞ and for each i, ∑
∞j=r∣∣ai j∣∣ < ∞. By Theorem 6.2.2 on Page 156, both of
the series ∑∞i=r ai j, ∑
∞j=r ai j converge, the first one for every j and the second for every i.
Also, ∑∞j=r∣∣∑∞
i=r ai j∣∣≤ ∑
∞j=r ∑
∞i=r∣∣ai j∣∣< ∞ and ∑
∞i=r∣∣∑∞
j=r ai j∣∣≤ ∑
∞i=r ∑
∞j=r∣∣ai j∣∣< ∞ so by
Theorem 6.2.2 again, ∑∞j=r ∑
∞i=r ai j, ∑
∞i=r ∑
∞j=r ai j both exist. It only remains to verify they
are equal.By Theorem 6.6.4 and Theorem 6.1.6 on Page 154
∞
∑j=r
∞
∑i=r
∣∣ai j∣∣+ ∞
∑j=r
∞
∑i=r
ai j =∞
∑j=r
∞
∑i=r
(∣∣ai j∣∣+ai j
)=
∞
∑i=r
∞
∑j=r
(∣∣ai j∣∣+ai j
)=
∞
∑i=r
∞
∑j=r
∣∣ai j∣∣+ ∞
∑i=r
∞
∑j=r
ai j =∞
∑j=r
∞
∑i=r
∣∣ai j∣∣+ ∞
∑i=r
∞
∑j=r
ai j
and so ∑∞j=r ∑
∞i=r ai j = ∑
∞i=r ∑
∞j=r ai j.It follows the two series are equal.
One of the most important applications of this theorem is to the problem of multiplica-tion of series.
Definition 6.6.6 Let ∑∞i=r ai and ∑
∞i=r bi be two series. For n ≥ r, define
cn ≡n
∑k=r
akbn−k+r.
The series ∑∞n=r cn is called the Cauchy product of the two series.