360 INDEX
inverse function theorem, 166, 168inverse image, 51inverses and determinants, 42invertible, 23iterated integrals, 127
Jordan curve theorem, 322Jordan separation theorem, 323
kinetic energy, 346Kroneker delta, 334
Lagrange multipliers, 168, 169Lagrangian formalism, 347Laplace expansion, 40Laplacian
general curvilinear coordinates, 353least squares regression, 161Lebesgue
points, 239Lebesgue integral
computing them, 234desires to be linear, 206nonnegative function, 202other definitions, 205simple function, 203
Lebesgue measurable functionapproximation with Borel measurable,
237Lebesgue measure
approximation with Borel sets, 237properties, 237
Lebesgue number, 69, 89left inverse, 32, 33lim inf, 57
properties, 59lim sup, 57
properties, 59lim sup and lim inf, 211limit
continuity, 143infinite limits, 141point, 63
limit of a function, 141limit of a sequence, 64
well defined, 64limit point, 141limits
combinations of functions, 141
existence of limits, 58limits and continuity, 143Lindeloff property, 68linear combination, 24, 38, 92linear functional
positive, 193linear independence, 95linear map of measurable set, 242linear maps, 9linear relationship, 24linear relationships
row operations, 25linear space, 91linear transformation
defined on a basis, 113dimension of vector space, 113rank m, 172
linear transformationsa vector space, 113sum, 113
linearly dependent, 92linearly independent, 92linearly independent set
enlarging to a basis, 95Liouville, 296Lipschitz
continuous, 74Lipschitz functions, 262
of measurable sets, 241little o notation, 144local maximum, 171local minimum, 171locally finite, 252logarithm
branches, 299lower semicontinuous, 89Lyapunov Schmidt procedure, 177
manifolddifferentiable, 264measure, 266orientable, 264smooth, 264
manifold boundarywell defined, 262
manifolds, 261matrix
left inverse, 43