350 APPENDIX B. CURVILINEAR COORDINATES

Theorem B.6.2 The Christoffel symbols of the second kind satisfy the following

∂ei (x)

∂x j =

{ki j

}ek (x) , (2.28)

∂ei (x)

∂x j =−{

ik j

}ek (x) , (2.29){

ki j

}=

{kji

}, (2.30){

mik

}=

g jm

2

[∂gi j

∂xk +∂gk j

∂xi −∂gik

∂x j

]. (2.31)

Proof: Formula 2.28 is the definition of the Christoffel symbols. We verify 2.29 next.To do so, note

ei (x) ·ek (x) = δik.

Then from the product rule,

∂ei (x)

∂x j ·ek (x)+ei (x) · ∂ek (x)

∂x j = 0.

Now from the definition,

∂ei (x)

∂x j ·ek (x) =−ei (x) ·{

rk j

}er (x) =−

{r

k j

ir =−

{i

k j

}.

But also, using the above,

∂ei (x)

∂x j =∂ei (x)

∂x j ·ek (x)ek (x) =−

{i

k j

}ek (x) .

This verifies 2.29. Formula 2.30 follows from 2.26 and equality of mixed partial deriva-tives.

It remains to show 2.31.

∂gi j

∂xk =∂ei

∂xk ·e j +ei ·∂e j

∂xk =

{rik

}er ·e j +ei ·er

{rjk

}.

Therefore,∂gi j

∂xk =

{rik

}gr j +

{rjk

}gri. (2.32)

Switching i and k while remembering 2.30 yields

∂gk j

∂xi =

{rik

}gr j +

{rji

}grk. (2.33)

Now switching j and k in 2.32,

∂gik

∂x j =

{ri j

}grk +

{rjk

}gri. (2.34)

350 APPENDIX B. CURVILINEAR COORDINATESTheorem B.6.2 The Christoffel symbols of the second kind satisfy the following0 {Sa omde) _ -{ i ek (x), (2.29))-(} cn(k= [te ae Su oanProof: Formula 2.28 is the definition of the Christoffel symbols. We verify 2.29 next.To do so, notee! (x) -e; (a) = 5}.Then from the product rule,de! (x)Oxsdex (a)-ex (a) +e! (a) AxlNow from the definition,de! (x)LF ex (e)=-e(@)-{ fo bets =—{ f bar=—{ fh.But also, using the above,ge age a@ter=—[ 4 JeThis verifies 2.29. Formula 2.30 follows from 2.26 and equality of mixed partial deriva-tives.It remains to show 2.31.Ogij OE 4 ej r -e; +e: rOxk = Oxk ej ej Oxk = ik er ej ej e+ ik .Therefore,Ogi; r r= je 2.32Oxk fieheot {i be ( )Switching i and k while remembering 2.30 yieldsO8kj r rNow switching j and k in 2.32,OgiK _ r r