338 APPENDIX A. BASIC VECTOR ANALYSIS

5. ∇× (f ×g) = (∇ ·g)f− (∇ ·f)g+ (g·∇)f− (f ·∇)g

Proof: These are all easy to establish if you use the repeated index summation conven-tion and the reduction identities.

∇ · (∇×f) = ∂i (∇×f)i = ∂i(ε i jk∂ j fk

)= ε i jk∂i (∂ j fk)

= ε jik∂ j (∂i fk) =−ε i jk∂ j (∂i fk) =−ε i jk∂i (∂ j fk)

= −∇ · (∇×f) .

This establishes the first formula. The second formula is done similarly. Now consider thethird.

(∇× (∇×f))i = ε i jk∂ j (∇×f)k = ε i jk∂ j (εkrs∂r fs)

=

=ε i jk︷︸︸︷εki j εkrs∂ j (∂r fs) = (δ irδ js−δ isδ jr)∂ j (∂r fs)

= ∂ j (∂i f j)−∂ j (∂ j fi) = ∂i (∂ j f j)−∂ j (∂ j fi)

=(

∇(∇ ·f)−∇2f)

i

This establishes the third identity.Consider the fourth identity.

∇ · (f ×g) = ∂i (f ×g)i = ∂iε i jk f jgk

= ε i jk (∂i f j)gk + ε i jk f j (∂igk)

=(εki j∂i f j

)gk−

(ε jik∂igk

)fk

= ∇×f ·g−∇×g ·f.

This proves the fourth identity.Consider the fifth.

(∇× (f ×g))i = ε i jk∂ j (f ×g)k = ε i jk∂ jεkrs frgs

= εki jεkrs∂ j ( frgs) = (δ irδ js−δ isδ jr)∂ j ( frgs)

= ∂ j ( fig j)−∂ j ( f jgi)

= (∂ jg j) fi +g j∂ j fi− (∂ j f j)gi− f j (∂ jgi)

= ((∇ ·g)f +(g ·∇)(f)− (∇ ·f)g− (f ·∇)(g))i

and this establishes the fifth identity. ■

338 APPENDIX A. BASIC VECTOR ANALYSIS5. Vx(fxg)=(V- 9) f-(V flat (av) f-(f-VY)9Proof: These are all easy to establish if you use the repeated index summation conven-tion and the reduction identities.O(V x f); = 9; (€:jn0j fe) = €ije% (Oj fe)€ jikO; (Of) = —€: jn; (Oife) = —E: jn (OjFx)-V-(Vxf).V-(Vx f)This establishes the first formula. The second formula is done similarly. Now consider thethird.(Vx(Vxf)); = €:jeOj(V X f)y = ijn 0; (ExrsOrfs)= Ej jk—~= Exij EkrsOj (0;fs) = ir O js _ 6555 jr) 0j (0,fs)= 9 (difj) — 9; (Ojfi) = 9% (AiF;) — 9 (Afi)= (VV. f)-vf)This establishes the third identity.Consider the fourth identity.Vi(fxg) = O(f xg), = if ise= €:jx (Ofj) Bt Eijnt; (Ask)(xij Afi) Sk — (€jikASK) fe= Vxf-g—-Vxg-f.This proves the fourth identity.Consider the fifth.(Vx(fF xg); = Eiji (FX G)p = EijeOjEkrs fr8sEkijEkrsOj (fr8s) = (Sir js — 5:59 jr) Oj (fr8s)0; (fig) — 0; F8i)(0)8;) fit 80 fi — (OiF;) 81 — Fj (Aj81)= ((V-g)ft+@a-V)(f)-V-f)g—-(Ff-V)(9));and this establishes the fifth identity.